
Linear Codes and Applications in
Cryptography

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (MSc)

in

Mathematics in Computer Science

by

Matthias Minihold, BSc
Registration Number: 0726352

Address: 3923 Jagenbach 140

eMail: matthias.minihold@gmx.at

to the Institute of Discrete Mathematics and Geometry
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Gerhard Dorfer

Vienna, 1.5.2013
(Signature of Author) (Signature of Advisor)

Institut für Diskrete Mathematik und Geometrie der Technische Universität Wien
A-1040 Wien � Wiedner Hauptstraße 8-10 � http://www.dmg.tuwien.ac.at

Contents

1 Linear Codes 7

1.1 Definitions . 7

1.2 General Decoding Schemes . 9

1.3 Important Classes of Codes . 10

1.3.1 Cyclic Codes . 11

1.3.2 RS Codes . 12

1.3.3 BCH Codes . 13

1.3.4 GRS Codes . 14

1.3.5 Alternant Codes . 14

1.4 Goppa Codes . 16

1.4.1 Classical Goppa Codes . 17

1.4.2 Decoding Algorithms . 19

2 Cryptography 25

2.1 Complexity Theory . 27

2.1.1 Suitable Problems and Algorithms 28

2.2 Public Key Cryptography . 32

2.2.1 The McEliece PKS . 33

2.2.2 The Niederreiter PKS . 38

2.2.3 Equivalency of McEliece and Niederreiter Cryptosystem 40

2.3 Signatures . 41

2.4 Authentication . 42

2.5 Security Considerations . 43

2.5.1 Symmetric Schemes . 43

2.5.2 Asymmetric Schemes . 46

2.5.3 McEliece and Niederreiter PKS . 46

2.6 Applications . 47

3

4

3 Example of PKS based on Goppa Codes using Sage 49
3.1 McEliece PKS . 55
3.2 Niederreiter PKS . 56

4 Quantum Computing 59
4.1 Quantum Bit . 60
4.2 Quantum Computer . 62
4.3 Quantum Algorithms . 63

4.3.1 Algorithm of Deutsch-Jozsa . 64
4.3.2 Quantum Fourier Transform . 67
4.3.3 Grover’s Algorithm . 68
4.3.4 Shor’s Algorithm . 69

4.4 Quantum Computing Milestones . 73
4.5 Post Quantum Cryptography . 75

4.5.1 Impact of the Quantum Computer on Cryptosystems 75
4.5.2 McEliece and Niederreiter PKS resist QFT 75
4.5.3 Grover vs. McEliece . 76

4.6 Quantum Cryptography . 77

quantum
computing quantum

information

qubit

quantum
parallelismquantum

algorithms

quantum
cryptography

computational
complexity theory

provable
security

P ?
= NP

runtime
analysis

discrete
mathematics

conjectured
hard problems

cryptography

post
quantum

cryptography

number theory

linear codes

physics

classical
limitations

quantum
mechanics

realization,
implementation

security
considerations

Figure 1: A mind map visualizing concepts and associations of topics in this thesis.

5

Abstract

In this master’s thesis the focus is on bringing together interesting results of different areas
— ranging from computational complexity theory to quantum physics — about the role
of linear codes in modern cryptography from a mathematical point of view. See Figure 1
for an overview. We discuss algorithms that solve certain cryptographic tasks and thus we
illuminate the application’s side as well, which outlines the constructive manner of this
field. On the one hand the interesting mathematical theory is presented and on the other
hand we point out where the theory can be used directly for applications in nowadays
information society.

Zusammenfassung

Diese Masterarbeit versucht die Ergebnisse unterschiedlicher Gebiete — angefangen von
theoretischer Informatik bis hin zur Quantenphysik — miteinander zu kombinieren um
die Rolle von linearen Codes in der modernen Kryptographie aus dem Standpunkt der
diskreten Mathematik zu beleuchten. Siehe Abbildung 1 zur Übersicht. Es werden die
wichtigsten Algorithmen präsentiert, welche gegebene kryptographische Problemstellun-
gen lösen, um auch den Anforderungen der Anwendungsseite gerecht zu werden. Das
verdeutlicht die konstruktive Natur dieses Gebiets; die interessante mathematische The-
orie wird direkt verwendet um daraus praktischen Nutzen in unserer heutigen Informa-
tionsgesellschaft zu ziehen.

Danksagung, Acknowledgements, Tackar

• Ein großes Dankeschön an meine ganze Familie, meine Freunde und Studienkollegen
für die Unterstützung und den Rückhalt während meiner gesamten Studienzeit. Ich
möchte durchaus erwähnen, dass die beiden letzten Mengen nicht-leeren Schnitt
haben!

• Thanks to my advisor Gerhard Dorfer for enabling me to write my master’s thesis
about this interesting topic in the first place and for the discussions and hints during
the process of writing. Furthermore thank you for your flexibility which made it
possible to finalize this thesis abroad — in Stockholm.

• Jag vill tacka Rikard Bøgvad och Hoshang Heydari s̊a mycket för de hjälpsamma
kommentarerna och för det varma välkomnandet i Stockholm.

• Additionally to all the personal thanking, I want to devote a small paragraph to
the often overlooked and seldom thanked people: Thanks to the whole OpenSource
community for providing software, templates and help in numerous forms such as
helpful discussions in forums. A lot of work is done in the background by writing
manuals for tools or a step by step how-to for a certain task, for example.

Introduction

Linear codes are an interesting area in discrete mathematics for two reasons. First of all
they provide a mechanism to transmit data over a noisy channel while ensuring the data’s
integrity. On the other hand, as we will see, they can be used to protect data against
unwanted readers, by using them for encryption.
Techniques of discrete mathematics are used to enhance the information transmission rate
and different codes are being studied to provide solutions for various problems occurring in
applications. Deep space communication for example has other needs than the telephone
network for mobile phones, thus there is a variety of classes of channel codes. Each class
meets other specific requirements and some classes, with importance for cryptography,
are discussed in Chapter 1.
It is often said nowadays that we live in an information society, based upon information
processing. Huge amounts of text and data is transmitted over digital networks today.
Thus topics like protection of sensible information and the need for mechanisms to ensure
integrity of data arise. Chapter 2 focuses on modern cryptography. Further motivation why
data protection is necessary is given there. Then cryptographic primitives are discussed in
general and the role of linear codes in this broad topic is especially illuminated. Possible
applications and algorithms round this chapter off.
Before the general discussion is extended, we present examples of such public-key cryp-
tosystems previously defined. Therefore we deal with the famous McEliece and Nieder-
reiter cryptosystems in Chapter 3 and provide a scalable toy-example to illustrate the
functioning using the computer algebra system Sage.
Then we assume a powerful, working quantum computer in Chapter 4 and regard the
impact of such a device on current state-of-the-art cryptosystems. The question why and
how certain systems based on linear codes withstand this threat so far is dealt with,
too. The discussion continues with future needs and enhancements in the field to make
cryptography ready in a post-quantum world, where a powerful quantum computer exists.
Finally — in Section 4.6 — a relatively new approach, namely quantum cryptography,
as well as the relations to and the implications for classical modern cryptography is
addressed. We close the circle by giving an outlook where development might head to and
see the important role of linear codes in modern cryptography once more.

6

1
Linear Codes

It is assumed that the reader is familiar with linear algebra and the basics about finite
fields. We will now start with some basics in coding theory and then advance to the codes
crucial for this thesis.
Here we are mostly interested in channel coding that means information needs to be
transmitted over a noisy communication channel, where errors may happen. Additional
information bits are appended before sending the message over the noisy channel. The
reason of the redundancy is that it can be used to correct or at least detect errors that
occurred during sending. How these redundancy comes into the data and how to efficiently
encode and later decode the data are questions dealt with in the following sections.
Source coding is about compressing data or representing given source bits with a minimal
amount of bits that therefore carry more information. Compression, contrary to channel
coding, is a technique to avoid redundancy. Both are not further investigated in this
thesis; only one last remark for readers familiar with telecommunication as sub-field of
electric engineering. There, the term channel coding is used synonymously for forward
error correction (FEC).
As can be seen in Chapter 2 about cryptography the codes originally constructed for
error correction can also be used to deflate a strong cryptographic scheme for protecting
information, sent over an insecure channel, against eavesdroppers.
The idea of using a technique that is good for one purpose exactly the other way round
was striking for me. Hence my interest awoke and I began reading about related topics in
more detail, which finally led to writing these lines and essentially this master’s thesis.
Unless cited differently, the notations, definitions and results in this chapter are taken
from my notes of the lecture “Fehlerkorrigierende Codes” (error correcting codes) [13]
given by Prof. Gerhard Dorfer at Vienna University of Technology.

1.1 Definitions

The linear codes that are of interest in this work, are linear block codes over an alphabet
A = Fq, where Fq denotes the finite field with q = p` elements ` ∈ N×, p prime. The
alphabet is often assumed to be binary that is p = 2, ` = 1, q = 2,F2 = {0, 1}. The
encoding of the source bits is done in blocks of predefined length k, giving rise to the

7

8 CHAPTER 1. LINEAR CODES

name “block code”.
Formally one can interpret encoding as applying an injective Fq−linear function fC : Fkq →
Fnq on an input block of length k. We want the mapping fC to be injective for the simple
reason to be able to uniquely reconstruct the source block from the codeword. Thus the
coordinates of fC written as a (k × n) matrix G (called the generator matrix) describe
the code C. The name generator matrix is used because every codeword can be generated
by multiplying a source vector x ∈ Fkq with G; C =

{
x ·G | x ∈ Fkq

}
≤ Fnq .

We see, a linear code C is a k-dimensional sub-vectorspace of Fnq , where n is called the
length. The dimension k ≤ n corresponds to the number of information symbols of C,
which for interesting codes is < n due to the mentioned redundancy the code adds to
the original information block. k is also referred to as dimension of the code. The sum
c := c1 + c2 of any two codewords c1, c2 ∈ C is again a codeword c ∈ C ≤ Fnq . A codeword
can be either seen as concatenated elements of the alphabet or as a vector, depending on
which representation is more intuitive.

Definition 1.1. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fnq , then the Hamming
distance of these two vectors is defined by d(x, y) := |{i : xi 6= yi}|.
The minimal distance for a code C is d := min{d(c, c̄)|c, c̄ ∈ C, c 6= c̄}.
The Hamming weight of x ∈ Fnq is defined by w(x) := |{i : xi 6= 0}|. The weight w(x) =
d(x, 0) is the Hamming distance to the zero vector.

In case of a linear code it is easily obtained that d = min {w(c) | c ∈ C, c 6= 0}. In general,
the distance can be expressed in terms of the weight d(x, y) = w(x− y).
Conformal with the standard literature about coding theory [22] an [n, k, d]−code C
denotes a linear code. The codewords have length n, carry k bits non-redunant information
and d is the minimal distance of C. On the other hand, a (n,M, d)−code is not necessarily
linear; here M denotes a set of codewords. To get the more general parameter M in the
linear case, let M be the set of all elements of the k-dimensional sub-vectorspace of Fnq
with cardinality |M | = qk, where q is the number of the alphabet elements.

Example 1.2. Consider the following binary [5, 2, 3]−code C with minimum distance
d = 3. C = {00 000, 10 110, 01 101, 11 011} would be a (5, 22 = 4, 3)−code since the
encoding function fC : F2

2 → F5
2 generates a 2−dimensional sub-vectorspace of F5

2.

Definition 1.3. Important relative parameters of an [n, k, d]−code are the relative mini-
mal distance D = d

n
and the information rate R = k

n
.

Let’s take a brief look on transferring data over a noisy communication channel, where
errors are likely to occur, from a coding theoretic viewpoint:

Information I ⇒ source (en)coding ⇒ x = (x1, x2, . . . , xk) ∈ Ak message block ⇒
channel (en)coding ⇒ c = (c1, c2, . . . , cn) ∈ C ⊆ An codeword ⇒ submission via
noisy channel (this is where errors might alter the message)⇒ received message block
y = c+ e ⇒ decoding ⇒ x̃ ≈ x ⇒ inverse source coding ⇒ (received information) Ĩ
≈ I (information before transmission).

1.2. GENERAL DECODING SCHEMES 9

Later we will see how this scheme can be extended when the information needs to be
securely transmitted.

Theorem 1.4. An [n, k, d]−code C can correct up to bd−1
2
c errors and detect d− 1 errors

(in the sense that the decoder knows some error occurred).

Theorem 1.5 (Singleton Bound). Let C be a linear [n, k, d]−code then k + d ≤ n+ 1.

The rows of the (k×n) generator matrix G are a basis of the Fq-vectorspace C. Encoding
is a matrix multiplication fC(x) = xG that can be established with much less effort if
G is given in a systematic block form G = (Ik|M), Ik is the (k × k) identity matrix and
M is a (k × (n − k)) matrix over the alphabet A. Systematic encoding appends (n − k)
redundancy symbols, it maps x = x1x2 . . . xk to fC(x) = x1x2 . . . xkc1 . . . cn−k.
An important role in decoding a linear code C has the so-called parity check matrix H
which is defined as ((n−k)×n) matrix H with rank n−k and the property that H ·GT = 0.
In particular, if the generator matrix G = (Ik|M) has systematic form, then the parity
check matrix H = (−MT |In−k) has a very simple structure.

Definition 1.6. The dual code of a linear code C ≤ Fnq is defined as

C⊥ :=

{
x = (x1, x2, . . . , xn) ∈ Fnq |

n∑
i=1

xi · ci = 0 ∈ Fq,∀c = (c1, c2, . . . , cn) ∈ C

}
.

1.2 General Decoding Schemes

Maximum likelihood decoding and minimum distance decoding are two general decoding
schemes for linear as well as non-linear codes. Syndrome decoding on the other hand is
an efficient scheme for linear codes.
Later we will see decoding methods best suited for particular classes of linear codes. Also
their complexity will be regarded because efficient decoding algorithms are desirable.
Fast decoding is a requirement for cryptographic schemes as we will elaborate in Chapter
2. There the question of decoding arises, but in a different context. In other words we
discuss how it can be seen as the inverse of a trapdoor function (see Definition (2.4)).

List Decoding

Definition 1.7. Let C be a code and x ∈ Fnq a received vector. An algorithm which, given
C and x, outputs the list

LC(x, t) := {c ∈ C | d(x, c) ≤ t}

of all codewords at distance at most t to the fixed vector x is called a list decoding algorithm
with decoding radius t.

For a linear [n, k, d]−code C, a list decoding algorithm with decoding radius t = bd−1
2
c is

sometimes called bounded distance decoding. In this case |LC(x, t)| ≤ 1 for all x ∈ Fnq .

10 CHAPTER 1. LINEAR CODES

Maximum Likelihood Decoding

Given a received codeword x ∈ Fnq maximum likelihood decoding (MLD) tries to find the
codeword y ∈ C to maximize the probability that x was received given that y was sent.
This probability is denoted by P(x received | y sent).

Minimum Distance Decoding

Minimum distance decoding (MDD) is also known as nearest neighbour decoding and
tries to minimize the Hamming distance d(x, y) for all codewords y ∈ C given a received
word x ∈ Fnq .
If the channel is a discrete memoryless channel (for instance a binary symmetric channel,
where no symbol to be sent is dependent on the previous ones sent) and the probability
that errors occur p < 1

2
then minimum distance decoding is equivalent to maximum

likelihood decoding.
As always, this method has restrictions one has to be aware of. If burst errors are likely
to occur the assumption on the channel to be memoryless can be unreasonable.

Syndrome Decoding

For an [n, k, d]−code C we can assume that the parity check matrix H is given. The code
C can be described as the kernel of the surjective map sH defined by

sH :=

{
Fnq → Fn−kq

x 7→ sH(x) := x ·HT .

The fact that

sH(x) = 0⇔ x ∈ C

and therefore

sH(x) = sH(y)⇔ x+ C = y + C

can then be used for decoding purposes, namely for constructing a lookup table. This
table can be of reduced size for storing all possible syndromes along with a minimal
weight representative of the corresponding coset. With the syndrome calculations during
the decoding process one only needs storage for (qn−k × 2) words instead of the naive
approach, where only a lookup in a table with (qn × 2) entries has to be set up.
For codes of practical relevance it is desirable that the information rate R = k/n is high.
Roughly speaking if R is close to 1, syndrome decoding is an advantage since n − k is
comparable small. Using the terminology of the previous sections syndrome decoding is
minimum distance decoding for a linear code over a noisy channel.

1.3 Important Classes of Codes

The classes of codes presented in this section are a selection of a variety of interesting codes
that exist. The importance of these particular codes is due to their practical applications.

1.3. IMPORTANT CLASSES OF CODES 11

The well known class of Reed-Solomon codes for example has already a broad field of
application in today’s life. They can be combined with other codes to further increase
their efficiency. Their error correcting capability is used for data, where burst errors are
likely to occur. Audio and video data, for instance, is stored on CD and DVD. The different
areas of deployment range from broadcasting media in DAB, DVB-T, DVB-S, DVB-C to
internet connections via xDSL (containing the well known ADSL), just to name a few.
Next we present BCH codes as generalization of Reed-Solomon codes.
Finally the strength of Goppa codes is discussed in this section including an efficient
decoding algorithm (see Patterson’s algorithm in Section 1.4.2) which can also be used
for cryptographic purposes.

1.3.1 Cyclic Codes

Cyclic codes are special linear codes that correspond to an ideal in the ring Fq[x]/(xn−1).
A word is in the code if and only if the cyclic shift of the word is in the code

c0c1 . . . cn−1 ∈ C ⇔ cn−1c0c1 . . . cn−2 ∈ C.

One can change the notation for a codeword c to a polynomial c(x) ∈ Fq[x] for the simpler
handling and the fact that multiplication by x mod (xn−1) corresponds to a cyclic right
shift of one position:

c0c1 . . . cn−1 ↔ c(x) =
n−1∑
i=0

cix
i ∈ Fq[x]/(xn − 1).

The generator polynomial g(x) of a cyclic code is the monic polynomial of smallest degree
in C. It follows that g(x)|(xn − 1) and therefore the dimension k of the code is k =
n− deg g(x). Obviously we have

c = c(x) ∈ C ⇔ g(x)|c(x).

In general the minimal distance d cannot be derived directly from the generator polyno-
mial g(x) = g0 + g1x + · · · + 1xn−k but a (k × n) generator matrix G is easily obtained
and is given by

G =


g0 g1 g2 . . . gn−k−1 1 0 . . . 0
0 g0 g1 g2 . . . gn−k−1 1 . . . 0
...

.
...

0 . . . 0 g0 g1 gn−k−1 1

 .

Observe that the leading coefficient of g(x) is 1 and therefore another important polyno-
mial is the uniquely determined parity check polynomial h(x) = xn−1

g(x)
which can be used

for decoding purposes.
The syndrome of cyclic codes can either be computed using g(x) or h(x)

sh(p(x)) := p(x)h(x) mod (xn − 1), (1.1)

sg(p(x)) := p(x) mod g(x). (1.2)

12 CHAPTER 1. LINEAR CODES

Equation (1.1) can be used to calculate the syndrome because

c = c(x) ∈ C ⇔ g(x)|c(x)⇔ (xn − 1) = h(x)g(x)|h(x)c(x)⇔ sh(c(x)) = 0.

Alternatively sg maps codewords to 0, because

c(x) ∈ C ⇔ g(x)|c(x)⇔ c(x) ≡ 0 mod g(x).

The dual C⊥ (see Definition (1.6)) of a cyclic code C is again cyclic with generator
polynomial g⊥(x) := xkh(1

x
).

1.3.2 RS Codes

Reed-Solomon codes (RS) are defined over an alphabet A := Fq. Along with the alphabet,
the codeword length n = q − 1 is fixed too.
Additionally let β a primitive element in Fq. This means the field can be written as
Fq = {0, 1 = β0 = βq−1, β1, β2, . . . , βq−2} and each element in F×q is a certain power of the
primitive element β and therefore one gets

xn − 1 = xq−1 − 1 =

q−2∏
j=0

(x− βj) =
∏
γ∈F×

q

(x− γ).

Given fixed numbers b and k one defines the generator polynomial of the RS code as

g(x) :=
n−k−1∏
j=0

(x− βb+j),

a polynomial which has n− k successive powers of β as roots.
The cyclic code one obtains is an [n, k, d]−code over Fq with dimension k and minimum
distance d = n− k + 1; it is a so-called maximum distance separable (MDS) code.
A word p of length n, again interpreted as polynomial, is a codeword if the following
condition holds:

p = p(x) ∈ C ⇔ p(βb) = p(βb+1) = · · · = p(βb+d−2) = 0.

With the observation that evaluating the polynomial p(x) = p0+p1x+· · ·+pn−1x
n−1 at βj

for j = b, . . . , b+d−2, and interpreting the result as a vector (p(βb), p(βb+1), . . . , p(βb+d−2)),
is exactly the same as multiplying the vector p = (p0, . . . , pn−1) with the matrix

H =


1 βb · · · β(n−1)b

1 βb+1 · · · β(n−1)(b+1)

...
...

...
1 βb+d−2 · · · β(n−1)(b+d−2)


T

,

one can see that this matrix H is a parity check matrix of the RS code C.
RS codes can be defined in an alternative way using the evaluation function

1.3. IMPORTANT CLASSES OF CODES 13

fC :

{
Fq,k[x]→ Fnq
p(x) 7→ (p(1), p(β), . . . , p(βq−2))

where Fq,k[x] denotes the set of polynomials over Fq of degree less than k.
A drawback of the RS codes often criticized is that the code length depends on the
alphabet. This can be avoided if another class of codes, a first generalization, is introduced
— the BCH codes.

1.3.3 BCH Codes

BCH codes, named after Bose, Chaudhuri, Hocquenghem, do not have the limitation that
the code length is fixed by the alphabet. Instead of taking a primitive element of the
alphabet A := Fq, choose a non-negative integer n, gcd(n, q) = 1 and let β be a primitive
n−th root of unity in a certain field extension Fqm of the alphabet Fq of degree m ≥ 1.
Here the minimal m ≥ 1 is ord(q) mod n, the multiplicative order of q in Z×n . Then we
have qm ≡ 1 mod n, or equivalently n|qm − 1. The polynomial

xn − 1 =
n∏
i=1

(x− βi) (1.3)

can be written as a product of linear factors in Fqm .
We mention that the choice n := q− 1,m := 1 leads to RS codes. If n := qm− 1 the BCH
code is called primitive.
To construct a BCH code, we need to fix a non-negative integer b and the designed distance
δ to obtain the largest possible cyclic code C having zeros at βb, βb+1, . . . , βb+δ−2.

Definition 1.8. Let µ(i)(x) denote the minimal polynomial of βi over Fq and b, δ as before.
The generator polynomial

g(x) := lcm(µ(b)(x), µ(b+1)(x), . . . , µ(b+δ−2)(x))

defines a cyclic code — a BCH code.

Because of Equation (1.3), g(x)|xn − 1 holds.
In the case when b = 1, C is called narrow-sense BCH code.

Theorem 1.9. The dimension of the code BCH C is k = n − deg g(x) ≥ n − (δ − 1)m
and its minimum distance d is at least as big as the defined minimum distance δ.

A proof of this theorem, along with more interesting facts and examples about BCH codes
can be found in the lecture notes [13, Ch. 1.11].

Definition 1.10. A sequence of codes (Ci)i∈N over Fq with parameters [ni, ki, di], i ∈ N is
called good if

lim
i→∞

ni =∞, lim
i→∞

Ri = lim
i→∞

ki/ni > 0, lim
i→∞

di/ni > 0,

in words, if both — the information rate and the relative minimum distance — approach
a non-zero limit as i→∞.
A family of codes is called bad if it is not good.

14 CHAPTER 1. LINEAR CODES

This definition, along with a proof of the theorem that any sequence of BCH codes is bad,
is given in [22, (Ch. 9 § 5)]. Soon we will encounter a class of good codes.

1.3.4 GRS Codes

Following [22, (Ch. 10 § 8)] let v := (v1, v2, . . . , vn) be non-zero elements of Fq and let
α := (α1, α2, . . . , αn) contain pairwise distinct elements of Fqm .

Definition 1.11. The generalized RS code (GRS) is given by

GRSk(α, v) := {(v1F (α1), v2F (α2), . . . , vnF (αn)) ∈ Fnqm | F (x) ∈ Fqm,k[x]},

weighted evaluations of polynomials F (x) ∈ Fqm [x] of degree degF < k.

This construction yields an [n, k, d]−MDS code. A parity check matrix is given by

H =


y1 y2 . . . yn
y1α1 y2α2 . . . ynαn
y1α

2
1 y2α

2
2 . . . ynα

2
n

...
...

...
...

y1α
n−k−1
1 y2α

n−k−1
2 . . . ynα

n−k−1
n

 = (1.4)

=


1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n
...

...
...

...
αn−k−1

1 αn−k−1
2 . . . αn−k−1

n

 ·

y1 0 0 . . . 0
0 y2 0 . . . 0
0 0 y3 . . . 0
...

...
...

. . .
...

0 0 0 . . . yn

 (1.5)

where (y1, . . . , yn) is a vector depending on (v1, . . . , vn),see Theorem (1.12).
We remark that for the choices n = q − 1, k ≤ n, v1 = v2 = · · · = vn = 1 and the
parameter b to define αi = βb+i, i = 1, 2, . . . , n where β is primitive in Fq, one gets the
classical RS codes (see Section 1.3.2) over Fq.

Theorem 1.12. The dual of a generalized Reed-Solomon code of length n is

GRSk(α, v)⊥ = GRSn−k(α, y)

for a suitable vector y.

A proof of how to construct the vector y can also be found in [22, (Ch. 10 § 8)]. This
vector plays an important role in the definition of alternant codes in the next section.

1.3.5 Alternant Codes

Before giving a description of alternant codes and their properties and capabilities we
have to discuss the subfield subcode construction.

1.3. IMPORTANT CLASSES OF CODES 15

Subfield Subcodes

Following MacWilliams and Sloane [22, (Ch. 7 § 7)] given non-negative integers r ≤ n,
and a prime power q, define m ∈ N such that rm ≤ n holds.
With this notation we want to look at parity check matrices and thus codes defined over
the (big) field Fqm and study codes that are restricted to the (smaller) subfield Fq ≤ Fqm .
Let H be a parity check matrix of a code ĈH . This means H = (Hij), with elements
Hij ∈ Fqm , for i = 1, . . . , r; j = 1, . . . , n, is an (r × n) matrix over Fqm with full rank r.
We are now interested in two codes with respect to H:

ĈH :=
{
b = (b1, b2, . . . , bn) ∈ Fnqm | HbT = 0

}
≤ Fnqm , (1.6)

CH :=
{
a = (a1, a2, . . . , an) ∈ Fnq | HaT = 0

}
≤ Fnq . (1.7)

This means ĈH consists of all vectors b = (b1, b2, . . . , bn), bi ∈ Fqm with HbT = 0 and is

thus a [n, k̂, d̂]−code over Fqm with k̂ = n − r (d̂ cannot be determined in this general

setting), whereas CH = ĈH ∩ Fnq consists of all vectors a = (a1, a2, . . . , an), ai ∈ Fq with
HaT = 0. An alternative way to obtain CH as well as the code parameters is to define a
matrix H̄. Upon fixing basis elements α1, . . . , αm of Fqm over Fq, one gets the (rm × n)

matrix H̄ by replacing each entry Hij by the column vector ~hij, so that

Hij =
m∑
l=1

αlhijl, ~hij =


hij1
hij2

...
hijm

 ∈ Fmq

holds. With this, we can characterize the codewords in CH . For a word a = (a1, a2, . . . , an) ∈
Fnq we have the following:

a ∈ CH ⇔ HaT = 0

⇔
n∑
j=1

Hijaj = 0 i = 1, . . . , r

⇔
n∑
j=1

hijlaj = 0 i = 1, . . . , r; l = 1, . . . ,m

⇔ H̄aT = 0.

Thus H and H̄ define the same code CH . Since the rank of H̄ over Fq is at most rm, we
identify CH as dimension k ≥ n− rm code. By definition the (r × n) matrix H has rank
r. The null-space of the matrix, which is the code CH with parity check matrix H, has
dimension k ≤ n− r.
To see CH ⊆ ĈH is easy, in fact by definition CH contains only those codewords of ĈH
where each entry is in Fq.

Definition 1.13. We write
CH = ĈH |Fq

and call CH a subfield subcode of ĈH or the restriction of ĈH to Fq.

16 CHAPTER 1. LINEAR CODES

To summarize the results, in general the [n, k, d]−subfield subcode CH of the [n, k̂, d̂]−code
ĈH has the parameter d ≥ d̂ and the dimension n− (n− k̂)m ≤ k ≤ k̂.

Definition of Alternant Codes

For two non-negative integers K,n, K ≤ n an alternant code is the subfield subcode of
GRSK(α, v), with α, v as in Section 1.3.4. More specific the alternant code

A(α, y) := {c = (c1, c2, . . . , cn) ∈ GRSK(α, v) | ci ∈ Fq, i = 1, . . . n} = GRSK(α, v)|Fq,

where y is the vector from Theorem 1.12 such that

GRSK(α, v)⊥ = GRSn−K(α, y).

Another characterization is that A(α, y) consists of all vectors c ∈ Fnq such that HcT = 0,
where H is a parity check matrix of GRSK(α, v), also compare to Equation (1.4):

H =


y1 y2 . . . yn
y1α1 y2α2 . . . ynαn
y1α

2
1 y2α

2
2 . . . ynα

2
n

...
...

...
...

y1α
n−k−1
1 y2α

n−k−1
2 . . . ynα

n−k−1
n

 . (1.8)

This identifies A(α, y) as an [n, k, d]−code over Fq with k ≥ n − mr, r := n − K and
d ≥ r + 1. We remark that the class of alternant codes, and therefore especially the class
of Goppa codes, is good as in Definition (1.10).

1.4 Goppa Codes

In this section we deal with the class of classical Goppa codes. Sometimes in older literature
the name Goppa codes is used for codes that nowadays are usually called algebraic-
geometric (AG) codes. Although they are interesting and experts believe they will be
deployed in practice soon, we will not discuss AG codes in detail.
Nevertheless, Goppa codes can be seen as subfield subcodes from the modern, more general
definition of AG codes as is elaborated in [16] by Høholdt and Pellikaan. There, the authors
further state that, in order to fully understand this algebraic-geometric view on codes, it
takes “5 years to grasp for an outsider”.
The same authors also think that the more general class of AG codes will be implemented
for practical purposes only when decoding algorithms as fast as Euclid’s algorithm with
a time complexity of O(n2), where n is the codeword length, will be found.
To date, with exception for some special cases, most algorithms for decoding AG codes
have a complexity of O(n3), which is considered impractical.
However, here we present the classical approach to define Goppa codes and have a look
at a suitable decoding algorithm for binary codes.

1.4. GOPPA CODES 17

According to the seminal work of McEliece [24] classical Goppa codes — especially those
defined over the binary alphabet F2 — seem to be best suited for applications in cryptog-
raphy and will therefore be discussed in further detail in Section 1.4.2.

1.4.1 Classical Goppa Codes

Now we consider the classical Goppa code with Goppa polynomial G(z) ∈ Fqm [z] of degree
r := degG(z) and locator set L = {α1, α2, . . . , αn} ⊆ Fqm , where m ≥ 1 is a fixed non-
negative integer. The so-called locator set (or support) L can be as big as Fqm , which is
a common choice, as long as G(αi) 6= 0, for all αi ∈ L.

Definition 1.14. The Goppa code Γ := Γ(L,G) with support L and Goppa polynomial
G(z) is defined by

Γ :=

{
c = (c1, c2, . . . , cn) ∈ Fnq | Rc(z) :=

n∑
i=1

ci
z − αi

≡ 0 mod G(z)

}
.

It can easily be seen that Γ is a linear [n, k, d]−code over the field Fq since the sum of
two codewords c+ c̄ and scalar multiples a · c, a ∈ Fq fulfill Rc+c̄ ≡ 0 respectively Rac ≡ 0,
when we define Rc(z) :=

∑n
i=1

ci
z−αi as before.

Upon receiving the word x = c + e = (x1, x2, . . . , xn), which can be seen as a codeword
and errors added at unknown positions, the syndrome polynomial is defined by

S(z) := Rx(z) =
n∑
i=1

xi
z − αi

. (1.9)

From this definition follows that x ∈ Γ⇔ S(z) = Rx(z) = Rc(z) +Re(z) ≡ 0 mod G(z).
Using Patterson’s algorithm (from Section 1.4.2) the decoding x 7→ c can be done effi-
ciently, if w(e) ≤ t errors occurred.

Goppa Codes are Alternant Codes

Goppa codes are an important subclass of alternant codes, which can be seen after some
calculations (see [22, (Ch. 12 § 3)]).
For fixed i, αi is no zero of the Goppa polynomial G(z) =

∑r
i=0 giz

i with gi ∈ Fqm , gr 6= 0,
therefore z − αi has an inverse mod G(z). Since z = αi is a zero of G(αi)−G(z)

(z − αi)−1 :=
G(αi)−G(z)

z − αi
G(αi)

−1 ∈ Fqm [z],

is a polynomial because the nominator can be divided in this domain. Finally

(z − αi) · (z − αi)−1 = (z − αi) ·
G(αi)−G(z)

z − αi
G(αi)

−1 ≡ 1 mod G(z)

holds. The expression G(αi)−G(z)
z−αi G(αi)

−1 = −G(z)−G(αi)
z−αi G(αi)

−1 ∈ Fqm [z] is a polynomial
of degree degG(z)− 1 = r− 1 for all i = 1, . . . , n since a degree one polynomial has been

18 CHAPTER 1. LINEAR CODES

divided from a degree r polynomial. We have:

c = (c1, c2, . . . , cn) ∈ Γ⇔
n∑
i=1

ci
z − αi

= 0 mod G(z)

⇔ G(z)
n∑
i=1

ciG(αi)
−1

z − αi
−

n∑
i=1

ci
z − αi

G(αi)
−1G(αi) = 0 mod G(z)

⇔
n∑
i=1

ci
G(z)−G(αi)

z − αi
G(αi)

−1 = 0 ∈ Fqm [z].

Since the degree of the left hand side is ≤ r − 1 the condition to be zero as a polynomial
is equivalent to be zero mod G(z).
Pellikaan et al. [30, Proposition 8.3.9] show the following theorem:

Theorem 1.15. Let G(z) =
∑r

i=0 giz
i with gi ∈ Fqm , gr 6= 0 be the Goppa polynomial to

construct Γ := Γ(L,G) with L = {α1, α2, . . . , αn} ⊆ Fqm.
Then the resulting Goppa code Γ(L,G) = A(α, y) is an alternant code with parameters
α = (α1, α2, . . . , αn) of fixed order and y = (G(α1)−1, G(α2)−1, . . . , G(αn)−1).

Proof. For all i = 1, 2, . . . , n the polynomial can be written as

G(z)−G(αi)

z − αi
=

r∑
l=0

gl(z
l − αli)

z − αi
=

r∑
l=0

gl

l−1∑
j=0

zjαl−1−j
i

=
r−1∑
j=0

(
r∑

l=j+1

glα
l−1−j
i

)
zj.

Hence equating the coefficients of zj to zero and using the remarks from above, one sees

c = (c1, c2, . . . , cn) ∈ Γ⇔
n∑
i=1

ci

(
r∑

l=j+1

glα
l−1−j
i

)
G(αi)

−1 = 0, j = 0, 1, . . . , r − 1

⇔ H̄ · cT =
(
h1, h2, . . . , hi, . . . , hn

)
· cT = 0,

hi := G(αi)
−1


gr 0 0 . . . 0
gr−1 gr 0 . . . 0
gr−2 gr−1 gr 0

...
. . .

...
g1 g2 g3 . . . gr

 ·


1
a1
i
...

ar−2
i

ar−1
i

 , i = 1, 2, . . . , n.

H̄ is a r×n parity check matrix of the form H̄ = CXY , with the invertible, lower triangle
shaped matrix C, the Vandermonde matrix X and the diagonal matrix Y :

H̄ =


gr 0 . . . 0
gr−1 gr . . . 0

...
. . .

...
g1 g2 . . . gr

 ·


1 1 . . . 1
α1 α2 . . . αn
...

...
...

...
αr−1

1 αr−1
2 . . . αr−1

n

 ·

G(α1)−1 0 . . . 0

0 G(α2)−1 . . . 0
...

...
. . .

...
0 0 0 G(αn)−1

 .

1.4. GOPPA CODES 19

To see that the Goppa code with this parity check matrix is an alternant code, we have to
multiply H̄ with the inverse of the invertible matrix C to get another parity check matrix
for the code Γ. Comparing the parity check matrices H := C−1 · H̄ in (1.10) with the
structure of (1.8) we see that Γ(L,G) = A(α, y) with α = (α1, α2, . . . , αn) of fixed order
and y = (G(α1)−1, G(α2)−1, . . . , G(αn)−1).

Either the matrix H̄ from the proof of Theorem (1.15) can be used as a parity check
matrix for the Goppa code or H := C−1 · H̄, which we write down explicitly once more:

H =


G(α1)−1 G(α2)−1 . . . G(αn)−1

α1G(α1)−1 α2G(α2)−1 . . . αnG(αn)−1

α2
1G(α1)−1 α2

2G(α2)−1 . . . α2
nG(αn)−1

...
...

...
...

αr−1
1 G(α1)−1 αr−1

2 G(α2)−1 . . . αr−1
n G(αn)−1

 . (1.10)

As discussed in Section 1.3.5, Γ is an [n, k, d]−code with length n = |L|, dimension
k ≥ n−mr and minimal distance d ≥ r + 1. To explicitly put this in the [n, k, d]−form,
Γ := Γ(L,G) is a linear [n = |L|, k ≥ n−m · degG, d ≥ degG+ 1]−code.
As Berlekamp summarized Goppa’s work in [2], the q-ary Goppa code Γ can decode t
errors if degG(z) = 2t. If Γ is a binary Goppa code this result can be improved. In this
case the Goppa polynomial G(z) need only have degree t and no repeated irreducible
factors to be capable of decoding up to t errors. We will present the result now and give
detailed coverage about the decoding of binary Goppa codes in Section 1.4.2.

Binary Goppa Codes

In [22, (Ch. 12 § 3) Theorem 6] MacWilliams and Sloane note the following result.

Theorem 1.16. Given a Goppa polynomial G(z) of degree t := degG(z) that has no
multiple zeros, so that the lowest degree perfect square Ḡ(z) that is divisible by G(z) is
Ḡ(z) = G(z)2, then the Goppa code Γ(L,G) is a [n, k, d ≥ 2t+ 1]−code.

We will use this result and give an efficient decoding algorithm for a Goppa polynomial
G(z) of degree t := degG(z) that is able to correct up to t errors in Section 1.4.2. In
Chapter 3 a binary Goppa code is used to construct a cryptosystem using the computer
algebra system Sage. We demonstrate the error correcting capability of the code there.

1.4.2 Decoding Algorithms

Decoding of alternant codes, and therefore especially decoding of classical Goppa codes,
consists of three stages (see [22, (Ch. 12 § 9)]).
Let A(α, v) be an alternant code over Fq with parity check matrix H of the form (1.4) and
with minimum distance d. As usual, the vector v := (v1, v2, . . . , vn) consists of non-zero
elements of Fq and α := (α1, α2, . . . , αn) contains pairwise distinct elements.
Next we suppose that t ≤ bd−1

2
c errors have occurred in the coordinates 1 ≤ j1 < j2 <

· · · < jt ≤ n of a received word x the with error values Y1, . . . , Yt ∈ Fq, respectively.
The definitions Xi := αji , i = 1, . . . , t and r := n− k abbreviate the following formulas.

20 CHAPTER 1. LINEAR CODES

Assume, as usual, the word x = c + e with a weight t error vector e is received and we
are interested in reconstructing the codeword c.

Stage 1) The syndrome is computed using the parity check Matrix H from Equation
(1.8), which is dependent on both vectors α and y = (y1, y2, . . . , yn). Recall
the connection of v and y from the construction of the dual GRS code.

(S0, S1, . . . , Sr−1) = x ·HT = e ·HT =

error vector︷ ︸︸ ︷
(0, . . . , 0, Y1︸︷︷︸

pos. j1

, . . .) ·HT

It is useful to define the polynomial S(z) :=
∑r−1

j=0 Sjz
j.

Stage 2) Find the coefficients of both, the error locator polynomial σ

σ(z) :=
t∏
i=1

(1−Xiz)

and the error evaluator polynomial ω

ω(z) :=
t∑

k=1

Ykyjk
∏
i 6=k

(1−Xiz)

so that they satisfy

ω(z)

σ(z)
≡ S(z) mod zr (1.11)

with the syndrome polynomial S(z) computed in Stage 1.

Equation (1.11) is called “key equation” of the decoding process of alternant
codes.

The key equation can be solved uniquely using a modified Euclidean algo-
rithm. Repeated polynomial divisions are carried out until certain degree
conditions for the remainders are met (see [22, (Ch. 12 § 9) Theorem 16]).

Stage 3) Because σ(X−1
i) = 0 for all i = 1, 2, . . . , t, we see that the reciprocals of

the roots of σ(z) are, by definition, the error positions Xi, i = 1, 2, . . . , t.
The error locations can be found by performing a search that checks for
all the field elements γ ∈ Fqm , whether σ(γ) = 0. We remark that more
sophisticated algorithms, like Chien search, exist for this task.

The error values can be computed, which is only necessary for q 6= 2,
because for q = 2 an error is easily corrected by flipping the erroneous bit.

In the general case the error values Yl, l = 1, . . . , t, are given by the following
formula, sometimes referred to as Forney’s Formula:

Yl =
ω(X−1

l)∏
i 6=l(1−XiX

−1
l)

= −Xl
ω(X−1

l)

yjlσ
′(X−1

l)
.

1.4. GOPPA CODES 21

To obtain this result, we have to express the formal derivative σ′ of σ(z) =∏t
i=1(1−Xiz). It is computed as

σ′(z) =
t∑

k=1

−Xk

∏
i 6=k

(1−Xiz).

Evaluating ω(z) =
∑t

k=1 Ykyjk
∏

i 6=k(1−Xiz) at z = X−1
l yields

ω(X−1
l) = Ylyjl

∏
i 6=l

(1−XiX
−1
l)

⇔ Yl =
ω(X−1

l)

yjl
∏

i 6=l(1−XiX
−1
l)

= −Xl
ω(X−1

l)

yjlσ
′(X−1

l)
.

Since in this thesis we focus on the binary case for various reasons, the decoding becomes
easier as we will see in the next section.

Patterson’s Algorithm

Patterson was the first to show that for a general Goppa polynomialG(z), where no further
assumptions need to be made about G(z), there exists an efficient algebraic decoding
scheme for the corresponding Goppa code Γ. He proposed a decoding algorithm with a
good running time, as we will present later in this section (see 1.4.2).
If the alphabet is binary, the description of Goppa codes gets easier and also the decoding
method presented here has an advantage over the generic case.
Following [7, (§ 1.2.4)] after fixing n,m and t < n

m
⇔ tm < n, choose a monic irreducible

polynomial G(z) ∈ F2m [z], degG = t. Using this generator polynomial G(z), which is
assumed to have no multiple zeros, and defining the Goppa code Γ as usual yields a
binary code with the parameters [n, k ≥ n− tm, d ≥ 2t + 1]. This is a direct application
of Theorem 1.16.
Now for a received word x = c+e, w(e) ≤ t, we want to compute the syndrome polynomial
S(z). We could either use the generic key equation (1.11) for alternant codes, or Equation
(1.12), since we have seen that they correspond to each other in Theorem 1.15. The latter
equation is more practical for the special case of Goppa codes and uses the definition of
the syndrome as in (1.9) to compute a solution to the key equation:

ω(z)

σ(z)
≡ S(z) mod G(z). (1.12)

It consists of three stages as discussed in the generic case for alternant codes, but becomes
easier since binary Goppa codes are used. More specific it is best to take the syndrome
polynomial S(z) as defined in Equation (1.9) and as Barreto, Lindner and Misoczki [29]
pointed out, use what they call “Patterson locator polynomial” — a slightly altered defi-
nition of the error locator polynomial

σ(z) :=
t∏
i=1

(z −Xi).

22 CHAPTER 1. LINEAR CODES

This polynomial has roots at Xi, i = 1, 2, . . . , t instead of their reciprocals. Here, using
the Patterson locator polynomial, the error evaluator polynomial

ω(z) ≡ S(z)σ(z) mod G(z) =
t∑

j=1

Yj
z −Xj

t∏
i=1

(z −Xi)

=
t∑

j=1

∏
i 6=j

(z −Xi) = σ′(z)

is the derivative of σ(z) =
∏t

i=1(z − Xi), since every error value has to be 1. The task
now is to solve the equation σ′(z) ≡ S(z)σ(z) mod G(z) for unknown σ(z).
By decomposing σ(z) = u(z)2 + zv(z)2 in “even” and “odd” parts, it is obvious that the
polynomials u(z), v(z) satisfy deg u(z) ≤ b t

2
c and deg v(z) ≤ b t−1

2
c since deg σ(z) = t.

The derivative of the error locator polynomial simplifies to σ′(z) = 2u(z)u′(z) + v(z)2 +
2zv(z)v′(z) = v(z)2 here, because the characteristic of F2m is 2.
Thus one can write

ω(z) = S(z) (u(z)2 + zv(z)2)︸ ︷︷ ︸
σ(z)

≡ σ′(z) mod G(z) (1.13)

≡ v(z)2 mod G(z). (1.14)

To solve Equation (1.14) for the unknown polynomial σ(z), first compute the inverse of
the syndrome T (z) ≡ S(z)−1 mod G(z) using the extended Euclidean algorithm (EEA)
for polynomials. If we compute the greatest common divisor of S(z) and G(z) it is clear
that the answer will be gcd(S(z), G(z)) = 1, since degS(z) < degG(z) = t and the Goppa
polynomial is assumed to be irreducible. Because this is already known in advance, the
EEA is only used to compute polynomials x(z), y(z), such that x(z)S(z) + y(z)G(z) =
gcd(S(z), G(z)) = 1. Regarding this equation mod G(z) shows T (z) := x(z) is the
inverse of S(z) mod G(z). With this polynomial we can write

u(z)2 ≡ (T (z) + z)v(z)2 mod G(z).

Next we need to compute a square root of T (z) + z. This is a polynomial r(z) with the
property that r(z)2 = T (z)+z mod G(z). Algebraically the square root can be computed
by decomposing T (z) + z = T0(z)2 + zT1(z)2. Given a fixed Goppa polynomial G(z) it is
sufficient to once and for all compute w(z)2 ≡ z mod G(z). To obtain the square root,
the next step is to compute r(z) := T0(z) + w(z)T1(z). Since

r(z)2 = (T0(z) + w(z)T1(z))2 = T0(z)2 + w(z)2T1(z)2 ≡ T (z) + z mod G(z)

holds here over F2m , this is a solution.
Finally, a modified version of EEA that stops the computation when the polynomials for
expressing the gcd reach a certain degree helps to obtain two polynomials u(z), v(z) with

u(z) ≡ r(z)v(z) mod G(z), (1.15)

deg u(z) ≤
⌊
t

2

⌋
, deg v(z) ≤

⌊
t− 1

2

⌋
. (1.16)

1.4. GOPPA CODES 23

We also refer to the example in Chapter 3, where the function called modifiedEEA pro-
vides both the functionality of the common extended Euclidean algorithm as well as the
possibility to stop the calculation and thus solve Equation (1.15).
At this point — using a similar argument as above — we are again aware that the
output of the common EEA that computes the greatest common divisor of r(z) and G(z)
is gcd(r(z), G(z)) = 1. We discuss solving (1.15) in greater detail now and follow the
notation of [20]: The EEA computes a sequence of polynomials fulfilling the recursion

rh−1 = qh+1rh + rh+1, h = 0, 1, . . . , s− 1,

and stops for some s to return the sought after gcd(r−1, r0) = rs, where r0 := r(z) and
r−1 := G(z) in our case. The degrees of the residue polynomials satisfy

deg rh+1 < deg rh, h = 0, 1, . . . , s.

Observe that the degrees in the sequence drop from degG(z) = t at the beginning to 0 in
the last step, where rs−1 = qs+1rs + rs+1 = qs+1rs holds. Therefore there exists a smallest
integer j, 0 ≤ j ≤ s such that deg rj ≤ t

2
. Apart from the necessary computation of the

rh, h = 0, 1, . . . , s − 1 in order to obtain the gcd, it is clever to keep track of a second
sequence during the Euclidean algorithm as well.
To compute solutions to Equation (1.15) while respecting the degree restrictions it is
sufficient to calculate only the first j elements in the sequence

zh = zh−2 − qhzh−1, h = 1, 2, . . . , j,

where z0 := 1 and z−1 := 0.
These sequences relate in the following way (see [20, Chapter 8, Ex. 8.43]):

rh ≡ zhr0 mod r−1, h = −1, 0, . . . , s,

deg zh = deg r−1 − deg rh−1, h = 0, 1, . . . , s.

The mentioned modification to the common EEA to perform this task, is to stop the
algorithm after the minimal index j is reached. Then the previous element in the sequence
satisfies deg rj−1 >

t
2

and therefore we have

deg zj = degG− deg rj−1 = t− deg rj−1 <
t

2
.

Because j was the minimal index with the property that the degree of u(z) := rj(z) drops
below t

2
and deg zj ≤

⌊
t−1

2

⌋
< t

2
holds, we set v(z) := zj(z) to satisfy both equations,

Equation (1.15) and Equation (1.16).
Hence the modifiedEEA that checks these degree conditions yields the desired solution.
The aim of this section is achieved since σ(z) = u(z)2 + zv(z)2 is fully determined, which
enables us to present the following listing based on the computation steps discussed above
and known as Patterson’s algorithm.
Computing the error positions e is sufficient, since flipping bits corrects the errors and
yields c = x+ e. As remarked earlier, the computationally hardest part of Algorithm 1 is
the root finding, which thus is a topic in current research.

24 CHAPTER 1. LINEAR CODES

Algorithm 1: The decoding process of binary Goppa codes

Input : Received vector x = c+ e, the binary Goppa code Γ(L,G).
Output: Error positions e.

Compute syndrome S(z) for the word x.
T (z)← S(z)−1 mod G(z)
if T(z)=z then

σ(z)← z
else

r(z)←
√
T (z) + z mod G(z)

Compute u(z), v(z) from u(z) = v(z)r(z) mod G(z)
σ(z)← u(z)2 + zv(z)2

end
Determine the roots of σ(z) and therefore get e.
return c← x+ e.

Running Time Analysis of Patterson’s Algorithm

Engelbert, Overbeck and Schmidt [9] summarize the running time of the previous steps
necessary for the decoding of a binary [n, k, d]−Goppa code over F2m . Thus assume that
the Goppa polynomial has degree degG(z) = t and the coefficients are in F2m .

• Computation of the syndrome polynomial S(z) using the parity check matrix H,
takes (n− k)n ∈ O(n2) binary operations.

• Computation of the inverse T (z) = S(z)−1 mod G(z) with the EEA takes O(t2m2)
binary operations.

• Computation of r(z) =
√
T (z) + z mod G(z) with the EEA takes again O(t2m2)

binary operations.

• In general also the modified EEA, which stops earlier than the common EEA, takes
O(t2m2) binary operations.

• The running time of the last step — the search for all roots of σ(z) — governs all
the other running times. The search can be done in n(tm2 + tm) binary operations.

Since (n− k) ≤ mt the overall running time of Patterson’s algorithm is O(ntm2).

2
Cryptography

In the beginning of the first chapter we saw the information transmission process from a
coding theoretic viewpoint. If we want to securely transfer data, we have to additionally
introduce a step for encrypting the message block before transmitting it over an insecure
channel. All the steps for error correcting are still needed, since every channel bears some
sources of errors in practice. We observe that coding theory strikes up to three time
when looking at the secure information transmission process from a cryptographic point
of view:

Information I ⇒ source (en)coding ⇒ x = (x1, x2, . . . , xk) ∈ Ak message block ⇒
encrypt message x 7→ z ⇒ channel (en)coding ⇒ c = (c1, c2, . . . , cn) ∈ C ⊆
An codeword ⇒ submission via noisy channel (this is where errors might alter the
message) ⇒ received message block y = c + e ⇒ decoding ⇒ z̃ ≈ z ⇒ decrypt
message z̃ 7→ x̃ inverse source coding ⇒ (received information) Ĩ ≈ I (information
before transmission).

The term cryptography stands for information security in a wide sense nowadays. It
deals with the protection of confidential information, with granting access to systems for
authorized users only and providing a framework for digital signatures. Cryptographic
methods and how to apply them, should not be something only couple of experts know
about and just a slightly bigger group of people is able to use. In contrast, cryptography
should become an easy to use technology for various fields of communication. It can be
as easy as a lock symbol appearing in the Internet browser, when logging on to bank’s
website, signalizing a secure channel, for example. Generally speaking any information
that needs to be electronically submitted or stored secretly could profit from an easy
access to good cryptographic methods. On the contrary, there is an idiom that says:

Security is [easy, cheap, good]. Choose two.

The topic of privacy and protection against unwanted adversaries has never been more
important. Thus it is desirable to make cryptography commonly accessible at least for a
certain minimum security level.

25

26 CHAPTER 2. CRYPTOGRAPHY

Another interesting topic — out of scope here though — is the need for people to get aware
of the fact where and which information about us is collected, processed and used everyday.
Thus we not only have to describe and research ways to encrypt information but to create
awareness and actually use the given methods to protect our personal information in a
way that we agree. This is more of an general advice, but now we focus on the methods
and algorithms again that are already deployed in practice and furthermore analyze to
what extend nowadays security protocols and encryption algorithms fulfill their task.
There exist certain clearly defined use-case scenarios, where cryptography provides solu-
tions. Although in big systems the weakest link of the chain are often the users, we keep
the focus on the aspects we can control. In this respect we use mathematical methods as
a tool to guarantee cryptographic strength of the underlying procedures.

How to find the right cryptographic primitives for one’s needs?

First of all one has to think about what data might need protection. Then of course, what
is the purpose of protecting the data. Questions like “Who might be interested in the
data?” or “How long does the data need protection?” and “Are active or passive attacks a
possible threat?” are considered in this next stage. Finally, the appropriate cryptographic
methods and a suitable security level (compare with Section 2.5) is chosen and set up.

Code-based cryptography

Those were interesting questions but now we focus on the appearance of coding theory in
cryptography in the following sections were we describe the influence of linear codes on
public key primitives like public key cryptosystems, signatures and finally identification
primitives.
The three areas of privacy, authentication and integrity are covered by modern cryptogra-
phy. The aim of coding theory on the other hand described by one word is reliability. Both
fields cover different areas in the field of digital information processing. It is interesting
to explore how they interact in modern cryptography.
Additionally to the (linear) code used for encryption, other error correcting codes may
and will be used for channel coding and even another code for source coding (as motivated
in the overview above 1.1). This of course, will not lead to confusion, but it again points
out the influence of different branches of coding theory in information processing.

Overview

In this chapter, we first make a short detour to theoretical computer science in Section 2.1.
To be more precise we deal with computational complexity theory, because therein lies
the cause that the mathematical theory can be applied to modern purposes in information
processing.
In the Section 2.1.1 we concentrate on problems based on coding theory. From a complexity
theoretic perspective this is a good choice, because other than the factorization of integers
or the hidden subgroup problem (see 4.3.4), the decoding problem has been proved to be
hard. The question why security based on this provable hard problem may still be not
enough and the term “provable security” (see 2.1.1) are elaborated in detail there.

2.1. COMPLEXITY THEORY 27

In the sections named Public Key Cryptography 2.2, Signatures 2.3 and Authentica-
tion 2.4 we address the three main topics of asymmetric cryptography. We will see that
cryptography is not merely about encrypting messages. It provides solutions to many
security-related aspects.
Additionally to security considerations in Section 2.5 we also concentrate on two public key
cryptosystems that have drawn much attention in the scientific community and experts
in cryptography. Other widely used cryptosystem are mentioned shortly and we point
out their disadvantages. Facts about their performance are given and problems of those
systems, as well as threats that exist, are addressed. Moreover possible improvements that
have been discussed in the literature and recent papers on the topic are presented.

2.1 Complexity Theory

Complexity theory, as part of theoretical computer science, will help us in this section to
find appropriate problems that can be used for good cryptographic schemes.
Now follows a short introduction to complexity theory to an extend that is needed in this
work. We start with some definitions.

Definition 2.1. P is defined as the class of deterministic polynomial time complexity
problems.

Heuristically, P can be described as the class of problems that gain moderately in difficulty
when the input size is increased.
The demand for resources to solve a problem of size n + 1 is not too large compared
to a problem of size n. Problems were an algorithm of the class P exist, are sometimes
referred to be “easy”, in the sense that computers can solve them using enough resources
in a moderate time frame. It is “feasible” to compute the solutions for problems in P .

Definition 2.2. NP is defined as the class of problems that there exists a non-deterministic
algorithm with polynomial time complexity of the input size.

How to actually solve an instance of such an NP problem after an arguable amount
of time, is not clear in the first place. Although a solution once found can be verified
in polynomial time, an algorithm constructing a solution in a deterministic way usually
requires a lot more time. As mentioned below no fast algorithm is known yet for any
problem in this class, thus solutions to problems in NP are sometimes referred to be
“infeasible to compute”.
General applicable algorithms to solve NP are guessing and brute-force testing, which
we use synonymous for an exhaustive search for solutions.
Of course the inclusion P ⊆ NP holds, but the question if the statement NP ⊆ P (and
thus P = NP) is also true, is one of the millennium problems listed in 2000 by the Clay
Mathematics Institute in Cambridge. A solution to this question is worth 1 000 000 US$,
which is an additional motivation for mathematicians and computer scientists.
A class of particular interest is the class NP-complete — problems that are “at least as
hard” as problems in NP . There are more than 3000 NP problems of practical interest
known in computer science and not even one deterministic algorithm with polynomial

28 CHAPTER 2. CRYPTOGRAPHY

time complexity is known to the researchers so far. Instead, most of those problems have
a time complexity that grows exponentially fast. Except for rather trivial lower bounds,
hardly anything is known.
An interesting question is “Do faster algorithms exist for a specific NP-complete prob-
lem?”. This is, in fact, one big question in cryptography, because we do not know if a
system based on such a problem is as secure as assumed. We refer to Section 2.3, where
the existence of one-way functions is discussed. Next we focus on specific problems of
interest in cryptography.

2.1.1 Suitable Problems and Algorithms

Now we want to present some sources of hard problems that are used for cryptographic
purposes. Two well known systems are based on number theoretic problems. The factor-
ization problem and the discrete logarithm problem. Although they are not proven to be
NP-complete, these two problems are of broad practical relevance to date and have been
topic to numerous scientific discussion in the last decades.

Factorization Problem

The RSA public key cryptosystem — named after Rivest, Shamir and Adleman — is
based on the integer factorization problem: Decompose an integer N = pq, which is the
product of two big unknown prime numbers p, q.
We remark that although we present the version of the RSA cryptosystem with ϕ, the
function ϕ(N) := (p− 1)(q− 1) can be replaced by the least common multiple instead of
the product λ(N) := lcm(p− 1, q − 1) ≤ ϕ(N) to save computational effort.
The setup for the public key requires a non-negative integer e ≥ 2, gcd(e, ϕ(N)) = 1
together with the product N . The private key is the factorization of N that is given by
the prime numbers p and q and the multiplicative inverse of e, which is a positive integer
d, such that ed ≡ 1 mod ϕ(N) holds. Using the factors p and q it is possible to calculate
d with ease.
Given a plain text encoded as a number m with 2 ≤ m ≤ N − 2, the encrypted plain text
is obtained by computing c := me mod N .
Receiving 1 ≤ c ≤ N − 1, the owner of the private key can calculate cd mod N , which of
course equals m = med = (me)d mod N the original message.
Although it is an interesting topic — studying the secure choices for p, q, e themselves or
the algorithms, for computing the occurring modular powers efficiently, for instance —
we refer to the huge amount of literature on this important branch of cryptography. In
Chapter 4 however, we will see the weakness of RSA under the assumption of a powerful
quantum computer and the speedup that can be achieved compared to the best classical
algorithms.

Discrete Logarithm Problem

The ElGamal cryptosystem is based on the discrete logarithm problem (DLP) for a cyclic
group G generated by an element g and can be stated as follows. Given an element
b ∈ G = 〈g〉, find the unique integer r such that gr = b in G with r < |〈g〉|.

2.1. COMPLEXITY THEORY 29

The setup requires a positive integer h as private key. The information about the con-
struction of the group (G = 〈g〉, g) as well as the element b := gh form the public key.
To send a message, which we assume to be encoded as an element m ∈ G, the sender
chooses a random positive integer k and sends the pair (gk,mbk).
The plain text can be recovered by the receiver with the private key h by computing

(mbk) · (gk)−h = mbkg−hk = mghkg−hk = m.

The feasibility of the algorithms to solve the DLP depends heavily on the structure of
the underlying group G. The simplest case for G is the residue class of integers with
addition. If one changes G to be points on an elliptic curves, the problem gets harder.
This introduced the use of elliptic curves in cryptography and the prefix “EC” became
widespread and since then labels methods that have been adapted to perform calculations
on elliptic curves.
Both problems, the factorization problem and the DLP can be seen as hidden subgroup
problem for appropriate finite Abelian groups which will be of importance in Chapter 4
about quantum computing.
In 1978 Merkle and Hellman introduced a competitor to RSA, the Diffie-Hellman Knap-
sack problem. It was based on the number theoretic problem called SUBSET SUM. Al-
though the general case of SUBSET SUM is NP-complete, the transformed version used
by Merkle and Hellman is computationally “easy”. The system was broken in 1983, which
showed that the transformation was not strong enough. Improved versions have also been
broken by an algorithm with polynomial time complexity.
Interestingly cryptographic problems that are based on linear codes, which will be dis-
cussed in the next section of this thesis, are not even among the most common used
cryptographic problems listed on Wikipedia [38] that meet hardness assumptions. This
work’s intend is to point out the advantages of linear codes in cryptography and to make
such systems more widely known.

Coding Theoretic Methods in Cryptography

In 1978 Berlekamp, McEliece and van Tilborg [3] showed that Maximum Likelihood De-
coding (as defined in Section 1.2) of a general linear code C is NP-complete.
The code is given in terms of the parity check matrix H. Given an arbitrary binary vector
y, the task is to find the error word e of minimum Hamming weight such that He = sy,
where sy := Hy is the syndrome of y.

Algorithm 2: Maximum Likelihood Decoding (MLD)

Input : H, y
Output: error word e of minimum Hamming weight such that He = sy, sy := Hy

To be more precise, the authors actually reformulated the problem stated as Algorithm 2
to an associated decision problem that gives either the answer “yes” or “no”, providing
information whether there exists a word e of weight w(e) ≤ t such that He = Hy. To
get the desired word of minimal Hamming weight, the general approach is to start asking

30 CHAPTER 2. CRYPTOGRAPHY

(by running the algorithm that answers the decision problem), whether there is a word of
weight t := 1 and increase t by 1 until the answer is “yes” for the first time.
The authors further proved a second problem to be NP-complete problem, which can
be stated as follows:
Given the number t of erroneous positions, find a codeword c ∈ C of weight w(c) = t. In
the literature about complexity theory, these results are summarized as

COSET WEIGHTS, SUBSPACE WEIGHTS ∈ NP-complete.

There is no algorithm known that fulfills those two tasks in polynomial time depending
on the input size (length of y respectively c). The existence of such an algorithm would
provide a major breakthrough in complexity theory.
Since a polynomial time algorithm would solve one of the famous millennium problems

listed by the Clay Mathematics Institute in Cambridge, the question P ?
= NP would be

answered “yes”. Most experts nowadays are skeptical about a positive answer ever to be
found to this problem, it seems more likely that P (NP .
A critic might think the situation in Algorithm 2, where H is obtained long before y and
thus may has been analyzed a lot, is a case of greater practical relevance.
However, Bruck and Naor [8] showed in 1990 that although H might be analyzed and pre-
processed for as long as desired, the so called Maximum Likelihood Decoding with Prepro-
cessing (MLDP) problem (see Algorithm 3 for the formulation) remains NP-complete.
In the proof they reduce MLDP to the simple max cut problem (SMC) that has already
been proven to be NP-complete.

Algorithm 3: Maximum Likelihood Decoding with Preprocessing (MLDP)

// Preparation: Preprocessing of H
Input : sy := Hy
Output: error word x of minimum Hamming weight such that Hx = sy

The fact that H is not part of the input allows “arbitrary preprocessing”, which is not
defined more closely by the authors and thus means any information that can be derived.
In the same paper they also ask the interesting question “Does every linear code have an
efficient decoder?” with relevance to coding theory. The fact that MLDP ∈ NP-complete
shows that a positive answer to this question is unlikely, since P (NP is conjectured.
Bruck and Naor conclude that: “knowledge of the code does not help in general in de-
signing an efficient decoder simply because there exist codes that probably do not have
an efficient decoder”.
It is important to remark that in complexity theory the term “hard” refers to the worst-
case, whereas in cryptography we need problems that are “hard” to solve for most in-
stances, which means they need to be hard in the average-case.
Based on the fact that the general decoding problem for a random linear code is hard in
the average-case — and it is likely to remain hard, unless P=NP is proven one day —
McEliece proposed a public key cryptosystem. We refer to Section 2.2.1 for more details
on how a linear code with rich structure is disguised to appear as a random linear code.

2.1. COMPLEXITY THEORY 31

Some Definitions

The terms one-way function, trapdoor function and hash function as well as the notion
of provable security are briefly discussed in this section.

Definition 2.3. A function f : X → Y is called one-way, if

• y = f(x) is “easy” to compute that means there is an algorithm A ∈ P for this task.

• Given y ∈ f(X) it is “hard” to compute an x ∈ X : f(x) = y. There is no
(probabilistic) polynomial time algorithm for this task.

It is interesting that there is an explicit function which has been demonstrated to be one-
way if and only if one-way functions exist at all. But still the mere existence of one-way
functions is not known.

Definition 2.4. Let f : X → Y be a one-way function.

• f is called trapdoor function if f is usually “hard” to invert, but given additional,
secret information (the trapdoor), there is a polynomial time algorithm to compute
the inverse.

• f is called a collision-free hash function, if no polynomial time algorithm given the
input x can find y 6= x with colliding images f(x) = f(y).

Sometimes the definition of a hash function is extended to randomized algorithms
only finding collisions with sufficiently small probability.

The factorization problem, DLP or decoding a random linear code provide candidates
for trapdoor functions in practice, although as we stressed before the existence is still
unknown.

An instance of each of those problems is easy to solve, if some additional information is
given whereas it is believed to be computational infeasible to solve a general instance.

Although we will not discuss further details here, interestingly the existence of one-way
functions also implies the existence of the following secure cryptographic primitives [40]:

• Pseudorandom number generators, (Aim: Deterministically produce random number
sequences that share many properties with truly random number sequences.)

• Bit commitment schemes, (Aim: A fixes a value and later reveals the commitment.)

• Private-key encryption schemes that are secure against adaptive chosen-cipher text
attacks (see Section 2.2.1),

• Digital signature schemes that are secure against adaptive chosen-message attacks,

• Message authentication codes (see Section 2.3).

32 CHAPTER 2. CRYPTOGRAPHY

Provable Security

Cryptography wants to provide methods that are, in a mathematical sense, provable
secure. The idea of underpinning the term provable security with methods from the field
of computational complexity theory leads to different definitions as well as it leads to
some confusion.

In this thesis however we speak of provable security, if — in order to break a system —
the attacker has to solve the underlying problem intended by the designer. This means
that we do not consider a specific implementation nor so-called side-channel attacks.In
the cryptographic schemes we presented, which are based on the suitable problems listed
above, an attacker is usually modeled as an adversary of the communication channel,
where secrets are exchanged. This is as much information as the adversary gets.

Mathematical proofs now try to show that — under these assumptions — the only possible
way to unveil the secret is to solve the hard problem.

As Koblitz and Menezes [19] remark that: “Throughout the history of public-key cryp-
tography almost all of the effective attacks on the most popular systems have succeeded
not by inverting the one-way function, but rather by finding a weakness in the protocol.”.

With this in mind we move on and discuss important cryptographic schemes.

2.2 Public Key Cryptography

Public key cryptography is fundamental to modern communication and the methods we
present in this section are actively involved in nowadays applications (see Section 2.6).

Since key distribution is the main problem in symmetric cryptosystems, asymmetric cryp-
tosystems — also called public key cryptosystems (PKS) — were introduced in 1976 by
Diffie and Hellman. PKS do not have the setup requirement that N communication part-
ners need

(
N
2

)
secret keys to be distributed over a secure communication channel. Instead

each participant requires a pair of keys that is individually generated. The pair consists of
a part that needs to stay private, the private key, and a public key that may be published
openly, for example on the Internet. A digital signature scheme can directly be derived if
the PKS has a certain property (see Section 2.3).

Key Agreement

Diffie and Hellman originally introduced their key agreement scheme based on the discrete
logarithm problem. Assume Alice and Bob want to communicate. This is how they agree
on a session key that can be used for establishing a secure channel using common public
key encryption.

After fixing a finite commutative group G and an element g of large order in G, Alice
chooses a random integer h, then she computes gh ∈ G and finally sends the result gh

to Bob. Bob on the other hand chooses a random integer k, then computes and sends
gk ∈ G to Alice. Both are now enabled to compute their joint key ghk. An adversary of
their communication channel has to solve the DLP for the cyclic subgroup 〈g〉 ≤ G in
order to compute h or k out of gh or gk, respectively.

2.2. PUBLIC KEY CRYPTOGRAPHY 33

Public Key Infrastructures

Although public key infrastructures (PKI) exist, where companies ensure that a key be-
longs to a person or user by providing certificates, PKS can be used without such an
infrastructure by manual distribution of the public key. Of course it is much more com-
fortable if the keys for communication are available on key servers on the Internet, but a
user has to trust the company prior to using this PKI. Key servers are one example how
the public key may be distributed to every communication partner.

On the other hand there is an alternative approach with advantages over both PKI and
manual distribution, called “web of trust” (WOT). There users sign the keys of others
that have identified themselves personally. Trust is then granted transitively through the
web that results from many users participating. This means if Alice A fully trusts Bob B,
who himself trusts C, it is suggested that A can trust C. We want to remark that there
are certain disadvantages of WOT, but this topic will not be pursued in further detail.
Instead, from now on we will always assume that keys are correctly distributed.

The first step to introduce coding theory to cryptography was done by McEliece more than
30 years ago. The McEliece cryptosystem proposed in 1978 [24] takes an easy instance of
a problem that in general belongs to the class NP-complete and disguises it as a random
instance of the problem, which is hard to solve. This idea is similar to the Merkle-Hellman
Knapsack cryptosystem (see Section 2.1.1), but McEliece uses a problem from coding
theory instead of number theory — and whereas the first problem was broken long ago,
McEliece’s cryptosystem withstands cryptanalysis so far.

The problem of decoding a general linear code is a hard problem, where no fast algorithm
exist so far. The additional information, how to transform the decoding of a general linear
code to the problem of error correcting a binary linear Goppa codes, where fast algorithms
are known, forms a good private secret suitable for a PKS.

Back then McEliece’s PKS seemed impractical to use, because there were simpler schemes
that were believed to be secure enough in the sense that no possible attack were known.

Today theoretic attacks involving the quantum computer (see Section 4.3.4) could ren-
der widespread used public key cryptography more or less useless. This possible threat
was the reason that the scientific community became even more interested in alternative
asymmetric ciphers that can substitute the affected schemes.

2.2.1 The McEliece PKS

In 1987 McEliece [24] suggested the implementation of a PKS by randomly selecting the
generator matrix of a binary [1024, 524, 101] Goppa code C (there are many such codes)
and disguising the code as a general linear code (there is a vast amount of such codes).
Two matrices were introduced that disguise the original generator matrix. Assume Alice
wants to set up the McEliece PKS:

Key generation. She chooses the code C such that the parameters fit with her desired
security level (see Section 2.5), and that she has an efficient decoding algorithm for C at
hand. Assume the code C is able to correct up to t errors and the generator matrix of the
code is G, then Algorithm 4 provides a private key to be stored and kept secret and the
suitable public key to distribute.

34 CHAPTER 2. CRYPTOGRAPHY

Algorithm 4: McEliece key generation

Input : (k × n) generator matrix G, error correcting capability t
Output: public key (G′, t), private key (S,G, P)

Choose a (n× n) permutation matrix P
Choose a regular binary (k × k)−matrix S
Compute (k × n) matrix G′ = SGP

Encryption. Bob who wants to send his message M to Alice, retrieves the public key
(G′, t) and therefore implicitly knows n, k. If the message is too long, the encryption
Algorithm 5 splits the message M in blocks m of suitable length |m| = k.

Algorithm 5: McEliece encryption

Input : message block m, public key (G′, t) and thus implicitly n, k
Output: encrypted message block c

foreach block m do
Compute c′ = mG′

Randomly generate a vector z ∈ Fnq with non-zero entries at ≤ t positions
Compute c = c′ + z, the cipher text block

end

Decryption. Assume Alice gets the McEliece encrypted cipher text blocks c1, c2, . . . and
wants to read the message M = m1m2 . . . , then Algorithm 6 describes the decryption
process.

Algorithm 6: McEliece decryption

Input : encrypted message block c, private key (S,G, P)
Output: message M = m1m2 . . .

foreach block c do
Compute c̄ = cP−1

The fast decoding algorithm of the code C corrects t errors. c̄→ m̄.
Compute m = m̄S−1, the clear text message block.

end
// The inverted permutation matrix P−1 and the inverted matrix S−1

can be precomputed once and for all.

Next we give the proof that decrypting an encrypted message yields the original message,
as desired.

Proof. The receiver of the encrypted block c has the private key (S,G, P) and can easily
compute P−1 and S−1. As well as z, the permuted version zP−1 has weight t. Since

c̄ = cP−1 = mG′P−1 + zP−1 = (mS)G+ zP−1

2.2. PUBLIC KEY CRYPTOGRAPHY 35

holds, the desired plain text codeword mSG has at most distance t from cP−1. The
efficient decoding algorithm corrects the t errors. The result is the codeword (mS)G ∈ C
from which m̄ = mS can be computed. Finally, we obtain the original message block
m = m̄S−1, by multiplication with S−1.

If we want to use the word trapdoor function (see Definition 2.4), the easy direction in
this case is the matrix multiplication G′ ← SGP during McEliece encryption. The hard
way is the matrix decomposition of G′ → SGP . The two matrices S, P actually disguise
the Goppa code as a general linear code.

Obviously, since G′ = SGP (the decomposition, of course, is unknown to the attacker)
might be well analyzed by an attacker before a cipher text is actually intercepted, the
many possibilities of the permutation P and the “scrambler” S are enough to hide the
actual code C and thus its effective decoding algorithm.

Reducing Public Key-Length

Assume G′ is the public generator matrix of a code C used for cryptographic purposes after
key generation. Using Gaussian elimination one can achieve a corresponding systematic
form Ḡ = (Ik|M), where Ik is the (k×k) identity matrix and M is a (k× (n−k)) matrix.
Since each step of the transformation of G′ to Ḡ is invertible, both essentially generate
the same linear code C. We mention that the public key owner might need to permute
the columns to get a systematic generator matrix. The inverse of these transformations
then of course have to be kept for decoding purposes. Although the decoding gets more
complicated for the owner of the key, the public key size can be considerably reduced as
follows.

The argumentation above shows that a systematic generator matrix Ḡ can be used instead
of the matrix G′ as the public key. This reduces the public key size requirements from
k ·n to k · (n− k) field elements. It is sufficient to store the non-trivial (k× (n− k)) part.
For binary codes, one can directly see how many bits can be saved using this additional
method, for example.

But, the main disadvantage of reducing key length like this is that it completely disables
the encryption, since the message will just be sent in plain text and certain bits will
be appended. Warning, using the McEliece cryptosystem like this makes no sense; it
resembles conventional channel coding and does not encrypt the data at all! The reason
why this approach is not discarded right away is because of a necessity pointed out in
Section 2.2.1. This approach, along with being aware of the immediate security flaw and
methods to deal with it, is sometimes referred to as “modern McEliece”.

Drawbacks and Attacks

More than 30 years ago the original parameters n = 1024, k = 524, t = 50 were proposed
to achieve a certain security level at that point of time. They have been adjusted to
n = 1632, k = 1269, t = 34 because of attacks that were explored since then. See Section
2.5 for today’s recommendations. Due to the chosen-cipher text attack described below,
modifications needed to be made to McEliece’s original system.

36 CHAPTER 2. CRYPTOGRAPHY

Using the updated and to date valid recommendation for the parameters, the modification
of using a systematic form (as in Section 2.2.1) leads to smaller public keys with k·(n−k) =
460647 bits. The key size is, compared to other PKS, rather large. This is the most
criticized fact about the McEliece PKS.
Berson [6] showed the following weakness that required the parameters to be adjusted:

Theorem 2.5. The message-resend attack applies to the McEliece cryptosystem and is
thus a weakness.

Proof. Suppose the same plain text x is encrypted twice and since the encryption is
probabilistic this, most likely, yields two different cipher texts y1 = xG′+z1, y2 = xG′+z2

with w(z1), w(z2) ≤ t. We emphasize that z1, z2 are two random vectors that are nonzero
only at t positions at most.
Computing b := y1 − y2 = z1 − z2 yields a vector that has non-zero entries where error
positions of both cipher texts y1, y2 are. Positions where b is zero were most likely error
free, because it is unlikely that both z1, z2 have the same value at the same position, if
chosen randomly.
This observation helps retrieving the sent message x without knowing H,M or P.

The message-resend attack presented does not depend on the code and can be generalized
to a so called related-message attack. This attack tries to exploit a linear relation between
messages that were encrypted to recover them.

CCA2-security

Assume an attacker of a cryptosystem is faced with the task given a cipher text and two
different plain texts to determine which one of them was encrypted to yield the cipher
text at hand.

Definition 2.6. A cryptosystem is called “adaptive chosen cipher text attack”-secure (or
CCA2-secure) if such an attacker — with unlimited computational power and with access
to a decryption oracle — can do no better than guessing.

The two plain texts are “indistinguishable” to the attacker in this sense, which is some-
times denoted as IND-CCA2-secure. The idea of this notion of security is that apart from
obvious and trivial observations, no additional information is leaked by a cipher text that
has been encrypted using a CCA2-secure PKS.
Although this is a topic for an actual implementation of the McEliece PKS that is naturally
concerned with efficiency, shorter keys obtained by choosing a systematic generator matrix
(as discussed in Section 2.2.1) is justifiable, because Overbeck [28] argues that these
“modifications do not alter the security of the system as long as a semantically secure
conversion is used” and “such a conversion is needed anyway”. So McEliece’s cryptosystem
should only be used in the CCA2-secure variant.
A detailed survey of possible conversion to make the McEliece cryptosystem CCA2-secure
has been carried out by Kobara and Imai [18, Ch. 4].
Although the public keys are still large with respect to other PKS, the mentioned weakness
to the message-resend attack does not occur in the similar Niederreiter cryptosystem
discussed in Section 2.2.2, although it is not CCA2-secure.

2.2. PUBLIC KEY CRYPTOGRAPHY 37

We come back to mention more drawbacks, like the low information rate that was criticized
before, which is R = 524

1024
for the original suggested values of the underlying [1024, 524, 101]

Goppa code. Also here the Niederreiter cryptosystem has some advantages and a theorem
about the rather good information rate will be presented in the next section. The large
public keys of the McEliece cryptosystem and code-based cryptosystems in general is
frequently named as reason that it never gained much practical relevance.
Possible attacks on the McEliece cryptosystem with the originally suggested parameters
are discussed now. Assume an attacker, like every communication partner, has the public
key (G′ = SGP, t) and further has intercepted a codeword y = G′x and naturally wants
to read the original message x. There are four possible threats:

1. Guess S and P . S is a regular (524×524) matrix and there are 1024! permutations.

2. MLD to find closest codeword. Compare y with the 2524 possible words.

3. Syndrome decoding. This can be done with 21024−524 = 2500 comparisons.

4. Select 524 random positions and hope they are not erroneous. The probability of
success that means no error in this set of 524 elements is very small given these
parameters (

1024−50
524

)(
1024
524

) ≈ 7, 2 · 10−17.

Obviously these four attacks are infeasible for the original parameters and remain safe for
a careful choice of new parameters for the code length and the dimension.

Exchange of the Code

Since the McEliece PKS is not bound to the underlying code, the idea of substituting the
proposed binary Goppa codes by other Goppa codes, even other classes of codes arose. We
already discussed some possible parameter adaptations and their limitations with respect
to security flaws.
Moreno and Janwa [17] start with the fact that there is not merely one [1024, 524, 101]
Goppa code but there are many of inequivalent Goppa codes with these parameters.
During the key generation, a user of the McEliece scheme has the freedom of choosing
one suitable Goppa polynomial of degree 50, for example.
The security relies on the fact that a high work factor is required to find the right code.
Since the work factor of the McEliece PKS with proper parameters is regarded to be
sufficient, the idea of reducing the code length, while keeping a high work factor led
Janwa and Moreno [17] to focus on the big class of algebraic-geometric codes. On the one
hand AG codes with shorter codeword length can be used to reduce the public key size,
but unfortunately the decoding algorithms for this general class are not efficient enough
so far. It is still a research topic to extend good decoding algorithms to bigger classes of
codes.
The geometric view on codes also introduces many new possibilities in varying the pa-
rameters and thus enhancing the work factor for cryptographic purposes and quite a few
attempts were made to establish encryption systems upon them.

38 CHAPTER 2. CRYPTOGRAPHY

For the particular case of substituting Goppa codes with generalized Reed-Solomon codes
Sidelnikov and Shestakov [36] have shown that there is an attack to the McEliece PKS.
This rules out a big class of codes for and moreover implies an insecurity in Niederreiter’s
PKS, since it is equivalent to the McEliece cryptosystem as proven in Section 2.2.3.

2.2.2 The Niederreiter PKS

To define the Niederreiter cryptosystem C (following [25, section 6.4]) one needs any linear
[n, k, d]−code C over Fq with an efficient decoding algorithm. This code, given implicitly
by the ((n−k)×n) parity check matrix H, needs to be secret. Additionally one generates
a (n× n) permutation matrix P and an arbitrary, regular ((n− k)× (n− k)) matrix M
over Fq. These three matrices form the private key. Define t := bd−1

2
c the maximum error

correcting capability of the code C.
The product H ′ := MHP of dimension ((n− k)× n) is the public key. H ′ can be seen as
the disguised version of H that ideally cannot be reconstructed from H ′ unless one gains
knowledge of M and P .
The admissible plain texts in this cryptosystem are words x ∈ Fnq with weight w(x) ≤ t.
The encryption process for a given x, is the computation of y := H ′x. This is deterministic,
contrary to the McEliece cryptosystem, where a random vector z ∈ Fnq is involved.
Being the owner of the private key M,P,H and receiving a cipher y we proof the correct-
ness of the decryption process.

Proof. Let y = H ′x = MHPx ∈ Fn−kq be an encrypted word. The first step in the
decryption process is the computation of y′ = M−1y = HPx = Hx′ if one sets x′ =
Px. Since w(x′) ≤ t, x′ can be interpreted as an correctable error vector. The decoding
algorithm of C is capable of correcting the t errors in an efficient way, thus retrieving x′

from y′ = Hx′. Finally computing x = P−1x′ yields the originally sent message.

Definition 2.7. The q-ary entropy function is defined by

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

Definition 2.8. Let S(C) be the number of possible plain texts and T (C) the number of
possible cipher texts of a cryptosystem C over the alphabet Fq.
Then the information rate of the cryptosystem

R = R(C) :=
logq S(C)
logq T (C)

may be viewed as the amount of information contained per bit in cipher text.

Example 2.9. Let C be a Niederreiter cryptosystem deployed over an [n, k, d]−code C,
the number of possible plain texts are all length n words with weight ≤ t := b(d− 1)/2c.
Therefore S(C) =

∑t
j=0

(
n
j

)
(q − 1)j, because for each j ≤ n we can choose j positions to

be some value 6= 0 and there are (q − 1) such values. The number of possible cipher texts
is T (C) = qn−k, since the public key maps length n input words to length (n − k) cipher
texts. We have

R(C) :=
logq(

∑t
j=0

(
n
j

)
(q − 1)j)

n− k
.

2.2. PUBLIC KEY CRYPTOGRAPHY 39

Next we present a theorem about the information rate of some Niederreiter cryptosystems
[25, Theorem 6.4.2]:

Theorem 2.10. Let q be a prime power and let 0 < θ < q−1
2q
. Then there exists a

sequence (Ci)i∈N of Niederreiter cryptosystems based on linear [ni, ki, di]−codes Ci over
Fq with lengths ni → ∞ for i → ∞ and weight conditions w(x) ≤ ti := bdi−1

2
c for the

admissible plain texts x ∈ Fniq , such that

lim
i→∞

ti
ni

= θ, lim
i→∞
Ri ≥

Hq(θ)

Hq(2θ)
.

The theorem can be interpreted as follows. The information rate of the cryptosystems may
stay reasonable good for long codes, when at the same time the ratio of error correcting
capability over code length remains constant.
The proof of the theorem as well as the following example are given in [25, section 6.4].

Example 2.11. Consider Niederreiter cryptosystems (Ci)i∈N over binary linear codes.
Since H2(1

4
) = −1

4
log2(1

4
)− 3

4
log2(3

4
) = 0, 5+0, 311 · · · > 0, 81 and H2(1

2
) = 1, there exists

a choice of θ sufficiently close to 1
4

= q−1
2q

such that Theorem 2.10 yields

lim
i→∞
Ri ≥

H2(θ)

H2(2θ)
≥
H2(1

4
)

H2(1
2
)
> 0, 81.

This shows that asymptotically 81 out of 100 bits cipher text carry information.

Unlike the RSA cryptosystem, the McEliece cryptosystem and the Niederreiter cryptosys-
tem cannot be directly converted to digital signature schemes. In Section 2.3 we will have
a closer look at signatures.
We remark that for the Niederreiter PKS it is sufficient to store the non-trivial ((n−k)×k)
part of the parity check matrix instead of the full ((n−k)×n). This reduces the public key
as discussed in Section 2.2.1. Although it is not that obvious, the CCA2-conversion (see
Section 2.2.1) still has to be done in order to achieve this notion of security. As Overbeck
pointed out in [28], a weaker form of an adaptively chosen cipher text attack, namely
the reaction attack, can still derive some information from a given cipher text — a fact
not allowed in the CCA2 model. Hence the “modern” version with the systematic parity
check matrix might as well be used since a CCA2-conversion is necessary anyway.

Drawbacks and Attacks

In the paper from the year 2006 [9] Engelbert, Overbeck and Schmidt discuss the security
of McEliece-type PKS. In particular, the authors describe the attack by Shestakov and
Sidelnikov on the original Niederreiter PKS that determines secret parameters in polyno-
mial time. In [9, Algorithm 3.2.1] they present an algorithm how to recover the private

key of a Niederreiter PKS based on GRS codes, where the public key H ′ ∈ Fn×(s+1)
q and

the maximum number of errors t are given that thus breaks the cryptosystem.
We stay conformal with their notation and remark that we have to set s := n − k − 1;
compare with (1.4). The attack takes advantage of the highly structured GRS code’s
parity check matrix over Fq. We note that GRS codes are MDS.

40 CHAPTER 2. CRYPTOGRAPHY

This attack renders a lot of possibilities to choose the underlying code insecure, including
the original Niederreiter PKS, which is based on GRS codes. Still — if deployed over irre-
ducible binary Goppa codes — the algorithm is not applicable and thus the Niederreiter
PKS based on this class remains secure. The fact that Goppa codes are not GRS codes,
but subfield subcodes of GRS codes, is enough since this leads to different matrices M in
the definition H ′ = MHP (see Section 2.2.2) used for constructing the public key.
Moreover the authors present the interpretation of H ′ as evaluated polynomials over Fq
by Shestakov and Sidelnikov. This viewpoint leads to a structural attack that is not
applicable if the matrix H ′ was generated using a parity check matrix H of a Goppa code
over F2. They argue that if the field has q = 2m elements for some m the construction
of the public key will yield different invertible matrices M ∈ F(s+1)×(s+1)

2m for GRS and

M ∈ Fm(s+1)×m(s+1)
2 for Goppa code to hide the secret code structure. H ′ is said to have

“no obvious structure, as long as M is unknown”.
There have been efforts to generalize this and similar structural attacks to subcodes of
GRS codes.
In their 2010 work [37] “Cryptanalysis of the Niederreiter Public Key Scheme Based on
GRS Subcodes” the Wieschebrink did further cryptanalysis and concludes that “there
seems to be no straightforward way to generalize the attack” to the case of irreducible
binary Goppa codes and “a more detailed analysis of the attack in this respect remains
part of future work”.
Next we will see how closely related the McEliece and Niederreiter cryptosystems are.
This result shows that there is no general structural attack for McEliece-type PKS using
Goppa codes either so far.

2.2.3 Equivalency of McEliece and Niederreiter Cryptosystem

In [25, Theorem 6.4.1] the authors show the following:

Theorem 2.12 (equivalent security). With corresponding choices of code parameters, the
McEliece cryptosystem and the Niederreiter cryptosystem achieve an equivalent level of
security.

Proof. Recall the definitions of both the McEliece and the Niederreiter cryptosystem.
Suppose first that we have an algorithm A to retrieve a vector x in polynomial time that
has been encrypted to y using the McEliece cryptosystem.
The attacker has the cipher vector y = xG+ z, w(z) ≤ t, and the publicly known matrix
G. The algorithm A is able to efficiently determine the vector x.
Now we consider the setting of the Niederreiter PKS. Assume we have a parity check
matrix H of a code C and a cipher vector y′ = Hx′, w(x′) ≤ t. Using the Gaussian
elimination algorithm from linear algebra, we can compute basis vectors v of the system
of linear equations Hv = 0 and therefore a generator matrix G of C. This can be done in
polynomial time. Next we compute a column vector u that solves Hu = y′. Now

H(u− x′) = 0⇔ u− x′ ∈ C ⇔ ∃a ∈ Fkq : (u− x′)T = aG.

This is equivalent to uT = aG + x′T , w(x′) ≤ t. Algorithm A retrieves a in polynomial
time, since the error x′ has weight at most t. Finally x′ can easily be computed. Hence

2.3. SIGNATURES 41

the Niederreiter cryptosystem is broken in polynomial time by the transformations given
above and algorithm A.
Conversely, suppose we know an algorithm B to break the Niederreiter cryptosystem. This
means that given a parity check matrix H of C and a vector y′ = Hx′ with w(x′) ≤ t, the
algorithm B determines the vector x′ in polynomial time.
Assume we have the generator matrix G of C and an vector y encrypted by the McEliece
PKS, so y = xG + z,w(z) ≤ t holds. Again by Gaussian elimination, we can compute a
parity check matrix H of C efficiently in polynomial time. We have

yHT = xGHT + zHT = zHT .

Since HzT = HyT ,w(zT) ≤ t, the algorithm B can be applied and retrieves the vector zT .
Finally, y− z = xG yields the plain text vector x in polynomial time; hence the McEliece
cryptosystem has been broken by B and the transformations specified above.

This proof especially shows that every attack on the McEliece PKS might be directly
applied on the Niederreiter PKS and vice versa.

2.3 Signatures

Another important topic is message authentication. After Alice and Bob have established
an encrypted communication channel, there is always the problem that there might be an
imposter that plays Alice’s role when communicating with Bob and the other way round.
Bob and Alice might never suspect anything, because everything looks normal.Such an
attacker is called man-in-the-middle.
The goal of data authentication is to enable the communication partners to check whether
the received message is from the claimed sender and furthermore detect if it was altered
during transmission. These aims are referred to as authenticity respectively integrity.

Message Authentication Code

A message authentication code (MAC) is a suitable one-way function that depends on a
key and adds message dependent information to a message thus providing authenticity
and integrity. Since MACs are symmetric cryptographic primitives, the same key used for
adding information to a message is needed by the recipient to verify the message. Often
hash functions (one-way function candidates that always output a word of fixed length,
given an arbitrary input) are used for this purpose.
A digital signature on the other hand is the asymmetric version of message authentication.
As long as a key pair can be identified with a unique person signatures can provide
authenticity and integrity in a comfortable and safe way.
Like a real signature on a piece of paper, a digital signature can be appended to digital
documents. A private key, known to belong to a certain user, can ensure the integrity of
the digital signature. Unlike most signatures, digital signatures are not human readable;
they are strings of letters accompanying the document. We refer to Section 2.6 for a
practical example.

42 CHAPTER 2. CRYPTOGRAPHY

An advantage over classical, written signatures is that the document’s origin can be ver-
ified by everyone with access to the public key and the content of a signed document can
not be altered without making the signature invalid.
To depict a real world analogy, digitally signing a document is like sealing the envelope
holding the document with a wax seal uniquely corresponding to the sender.
We remark the property that enables arbitrary PKS to work as a signature scheme is that
the decryption algorithm needs to be able to be applicable to every plain text — without
restrictions.

A Signature Scheme using Hash Functions

We now discuss a generic method of setting up a signature scheme using hash functions.
Assume Alice has a key pair suitable of performing public key encryption.
General signature generation: Algorithm 7 shows how Alice can prove her message’s
origin. Alice and Bob agree on a common, secure hash function h and a PKS. Let fe
denote the encryption function of the PKS (depending on Alice’s public key) respectively
decryption function fd (depending on Alice’s private key).
A hash function h, as introduced in Definition 2.4, is a cryptographic primitive which is
used in a way that it maps the input of arbitrary length to a string of fixed length.
Alice wants to prove the authenticity and the integrity of message M she sends to Bob.

Algorithm 7: Signature generation

Input : Alice’s private key, message M
Output: signed message S

Compute hash of message s′ ← h(M)
Scramble (=decrypt) the hash value using the private key s← fd(s

′)
Append signature to the message S = [M, s]

General signature verification: Upon receiving a message S and retrieving Alice’s
public key, Bob tries to verify, whether S originates from Alice. Algorithm 8 summarizes
the steps to perform this task.

2.4 Authentication

Authentication — not to be confused with message authentication — is the process of
getting access to a server, for example.
Authenticating ones identity to a server is usually done via a secret password. A copy of
the password itself or of its hash value needs to be stored on the server to compare it
when the user attempts to log in. This may be insecure and many techniques are known
to crack such password files or hash files stored on the server if they are accessible for an
attacker.
Assuming a working public key infrastructure, there exists a better method than storing
plain text or the hash value.

2.5. SECURITY CONSIDERATIONS 43

Algorithm 8: Signature verification

Input : signed message S = [M, s], Alice’s public key
Output: logical value, deciding whether M is from Alice and M is untampered

Split signature S in it’s two components s and M
Restore (=encrypt) the hash value using the public key s̄← fe(s)
Compute s′ ← h(M)

// Assuming Alice is the only person with access to the private key:

if s′ = s̄ then
return true; // The message originates from Alice.

else
return false; // Either the message does not originate from Alice or

the content of the message has been changed.

end

Public key authentication of a user to a server works by sending the signature of the user’s
password that has been created with the user’s private key.

Ylonen summarizes the authentication process in [43, Ch. 7]: The server

• MUST check that the key is a valid authenticator for the user and

• MUST check that the signature is valid.

If both conditions hold “the authentication request MUST be accepted; otherwise, it
MUST be rejected”. After accepting the public key authentication the server grants access
or may require additional authentication steps.

2.5 Security Considerations

Cryptographic functions, used for computer security, often have the property that they
protect certain data against attackers by using a secret of length usually much less than
the message itself — the private key.

Thus the length of the secret key is an important security parameter. Following the
axiom known as Kerckhoffs’ principle, the security of a cryptographic system depends
on the secrecy of the key alone. The rest — like details of implementation, methods or
algorithms — need not to be kept a secret, in fact the details can be public knowledge.
Some argue the routines even should be well known and therefore are likely better analyzed
and thus more suitable for cryptographic systems.

2.5.1 Symmetric Schemes

For the well studied Advanced Encryption Standard (AES), the key size required to pro-
vide a certain level of security is considered to be the same as for symmetric cryptographic

44 CHAPTER 2. CRYPTOGRAPHY

schemes in general. To apply general considerations about key lengths to a specific cryp-
tosystem, of course, relies on the assumption that the symmetric scheme itself is secure
and cannot be circumvented.
Since AES is believed to be secure from a cryptoanalytic viewpoint — which is under-
pinned by a lot of research — a brute force attack is essentially the only threat. The
feasibility of a systematic key search to decrypt encrypted data naturally depends on the
number of possibilities there are. Hence if the number of key bits is large enough this
attack is not feasible and the symmetric cryptosystem secure.
To determine the actual number of bits suitable for a specific purpose, one has to take
into consideration:

• the lifetime of data,

• possible attackers,

• and their computing power P .

A predicted short lifetime of data reduces the need for a long key. Moore’s law of expo-
nential growth of computing power — it doubles roughly every 18 months — on the other
hand may require a longer key, if the lifetime of data is more than, say 2 years.
To estimate the computing power P of an attacker mentioned above, one needs to simulate
an attacker and take the resources at hand into account. The formula of describing P might
include the number of processors in common computers (CPU) or graphic cards (GPU)
that might be available for the attacker, for example.
This leads to an n-bit key where the resources of breaking the system cost too much time
or money compared to the worth of the data.
The European Network of Excellence in Cryptology II (ECRYPT2) recommends the min-
imum key sizes to protect data for a few months against different attackers with varying
resources.
There they choose the number n of key bits, in a the way that 2n/P is “somewhat larger
than the lifetime of the protected data”. The recommendations are provided in Table 2.1.
The key bit recommendations taken from the ECRYPT2 paper are not adapted to a
specific symmetric cryptosystem but consider a brute force key search as the best attack,
which is reasonable if “the cryptosystem as such can be assumed to be secure for the
lifetime of protected data”.
Before taking a look at the table, we have to introduce the occurring abbreviations. The
abbreviation PC stands for the common personal computer that may be connected in huge
numbers via the Internet, for example. The field-programmable gate array (FPGA) is a
more specialized device than the all purpose PC. An FPGA is an integrated circuit that
needs to be configured after manufacturing and can thus be adapted to cryptographic
purposes that therefore carry out those tasks more efficiently. Finally an application-
specific integrated circuit (ASIC) is an integrated circuit that is designed for a particular
use and hence can be even more customized for the execution of cryptographic tasks.
An interesting estimate, also mentioned in the paper [27], is the total computational
power of the Internet, which (in the year 2006) was about 285 operations per year. A
certain fraction of this is controlled by hackers and malicious software. Hence the minimal
requirement for some months of protection is set to 58 bits of symmetric key size.

2.5. SECURITY CONSIDERATIONS 45

Attacker Budget USD Hardware Minimum bits security
Hacker, Malware 0 to 400 PC, FPGA 58-77
Small organization 10 000 PC, FPGA 69
Medium organization 300 000 FPGA, ASIC 69
Large organization 10 000 000 FPGA, ASIC 78
Intelligence agency 300 000 000 ASIC 84

Table 2.1: Minimum symmetric key size in bits for various attackers

A high security level may not be necessary and sometimes even not be reasonable for
all types of applications. Depending on the application this might lead to lower security
requirements for a certain task. Environments with limited hardware and computational
power are an example where such considerations are made.
Thus ECRYPT2 meant to “define some security levels and quantify what security they
reach and in which cases they might be acceptable” and they provided the Table 2.2
accordingly.

Bits Protection Comment on usage
32 Attacks in real-time authentication tags
64 Very short-term not for confidentiality
72 Short-term against medium organizations
80 Very short-term against agencies smallest general-purpose protection
96 Legacy standard level about 10 years protection

112 Medium-term protection about 20 years protection
128 Long-term protection about 30 years protection
256 Foreseeable future good protection against quantum computers

Table 2.2: Security levels and symmetric key size equivalent

Although a certain security margin has been added to the numbers in the table, they
remain estimates. Development in the area of cryptanalysis especially discovering new
attacks or improvements in the field of quantum algorithms (see Chapter 4) could change
these tables.
We could go on listing interesting tables about security considerations for specific systems
or against certain well-defined attackers. Instead we recommend the “Cryptographic Key
Length Recommendation” website by Giry [15].
There the description points out that although publications and recommendations are
widely available “choosing an appropriate key size to protect one’s system from attacks
remains a headache as you need to read and understand all these papers”. Like the tables
from above, both academic and private organizations assume a certain setting and provide
estimated minimum key sizes for different levels of security.
The purpose of this website is to “summarize reports from well-known organizations
allowing you to quickly evaluate the minimum security requirements for one’s system.
You can also easily compare all these techniques and find the appropriate key length for

46 CHAPTER 2. CRYPTOGRAPHY

one’s desired level of protection”. The authors of this website have taken various papers
into account that give advice how to resist structural, mathematical attacks. Specific
algorithmic attacks or hardware flaws, for example, were not considered by them and
recommendations are thus to be seen in this light.

2.5.2 Asymmetric Schemes

The analysis of the security of asymmetric cryptography schemes is more difficult than the
analysis of symmetric schemes considered in the last section. Although computationally
hard problems are used as a source for asymmetric systems, they could not be proven to
be secure by mathematical means so far. The security is mostly based on assumptions,
even if there are strong indicators for it.
The keys in an asymmetric cryptography setting usually have more bits than keys of
a symmetric scheme of comparable security level. Too large keys are negative for the
performance of the asymmetric scheme. It is always a trade-off and since attacks exist
that are more effective than brute force guessing, the secret keys may not be too short
either.
According to the detailed discussion in chapter 6 of the ECRYPT2 report, Table 2.3 shows
the minimum key lengths for asymmetric security accumulated (see [27, Table 7.2]).

Security (bits) RSA DLP field size DLP subfield EC
80 1248 1248 160 160

128 3248 3248 256 256
256 15424 15424 512 512

Table 2.3: Security levels and key size equivalent of common PKS

The figures and their validity must be seen in the light of best algorithms known to the
scientific community. The conversion between symmetric key size recommendations and
appropriate asymmetric key sizes has been discussed in the report [27, Chapters 5,6,7] in
detail.
We remark that hybrid schemes exist where the good properties from both symmetric
and asymmetric cryptosystems are combined. Asymmetric schemes are merely used to
protect a symmetric key that secures the communication itself. Nevertheless, security
considerations have to take every compound into account, because a “weak link in the
chain” is undesirable.

2.5.3 McEliece and Niederreiter PKS

In 2008 Bernstein, Lange and Peters [5] showed how to attack the McEliece cryptosystem
more effectively and thus reduced the security. They also gave a guideline to defend the
system, by adjusting the parameters so that it is not vulnerable to their attack, which
is up to date the best attack known. We remark that the same parameters apply to
the Niederreiter PKS, since in Section 2.2.3 it is shown that the two cryptosystems are
equivalent from a cryptoanalytic point of view.

2.6. APPLICATIONS 47

bits n k d degG(z) errors size of key
80 1632 1269 ≥ 69 33 34 460 647

128 2960 2288 ≥ 115 56 57 1 537 536
256 6624 5129 ≥ 235 115 117 7 667 855

Table 2.4: Security levels and according parameters of the McEliece PKS

In Table 2.4 the parameters suitable to achieve a certain level of security are given accord-
ing to the paper by Bernstein, Lange and Peters, where G(z) is the Goppa polynomial
used to construct a binary [n, k, d]−Code. One column shows the recommended errors to
be added and another one the size of the public key in bits calculated with the formula
k · (n − k) that is valid if only the non-trivial part of the generator matrix needs to be
stored.

key size (bytes) 216 217 218 219 220

n 1744 2480 3408 4624 6960
degG(z) 35 45 67 95 119

errors added 36 46 68 97 121
security level (bits) 84.88 107.41 147.94 191.18 266.94

Table 2.5: Parameters of the McEliece PKS with limited key size

The key length is always mentioned as a major disadvantage of the McEliece cryptosystem.
There may be constrained environments for the deployment. Table 2.5 gives an overview
of suitable parameters if the key size is limited due to storage constraints.

2.6 Applications

Apart from the rather general cryptographic applications like PKS, authentication and
methods providing signatures and authenticity we dealt with in previous sections, we now
want to briefly point out some more applications where cryptographic methods appear in
everyday life. Cryptography that works in the background and users do not even need to
be aware of its presence is desirable. For then it obviously is an easy to use technology
that is cheap — or even free. The idiom at the start of Chapter 2 reminds us that although
it might be fairly good it is probably not the most secure method available.

Connecting to Wireless Networks

The first step of users coming in touch with strong cryptography is often the connection
to a wireless network that is protected via “Wi-Fi Protected Access II” (WPA2). Most
common is the authentication by using a pre-shared symmetric key but more sophisticated
authentication methods based on the AES are also available. The actual communication
between the user and the access point is then encrypted via the symmetric cipher AES.

48 CHAPTER 2. CRYPTOGRAPHY

The keys for the algorithm are repeatedly generated, because they expire after a preset
time for security reasons.

E-Mail

In the classical case of sending signed messages via e-mail — the domain of public key
cryptosystems, there is usually a block of characters marked as signature appended to the
text and for each attachment a separate file with a .sig ending is created.
For examples users of GnuPG (http://www.gnupg.org/) signing an e-mail produce a
text block that looks like this:
-----BEGIN PGP SIGNATURE-----

...
-----END PGP SIGNATURE-----

If the e-mail is encrypted the original text is replaced by some cipher text enclosed in the
-----BEGIN PGP MESSAGE-----

...
-----END PGP MESSAGE-----

delimiters. Each attachment is replaced by a file with a .pgp ending and additionally the
message can then be signed by appending a block like before.

Surfing on the Internet

Another prominent example of cryptography in everyday life is the Transport Layer Secu-
rity (TLS) protocol, a hybrid protocol combining both symmetric and asymmetric cryp-
tographic primitives. Most Internet users access the world wide web via their favorite
browser that establishes connections to servers based on protocols, for instance TLS. In
the browser’s address bar the prefix https (instead of http) indicates the use of a secure
channel. This is often accompanied by a lock, to symbolize the encrypted communicating
between the user and the server which is verified by some certificate authority.
A secure channel to do online financial transactions, for example, is desirable. Apart from
that, the use of a secured channel in most online activities has no drawbacks for the user.
Therefore it is preferable to use encrypted communication to unsecured connections for
surfing on the Internet.

Online Transactions Using an Alternative Currency

Another interesting application of cryptography not directly connected with exchanging
messages is Bitcoin. Cryptographic primitives form the base for the “most widely used
alternative currency” [33] called Bitcoin. Bitcoins (http://bitcoin.org/) are a global
mean of payment and have no central bank as support. These digital coins are used in a
peer-to-peer network and only rely on cryptographic protocols. Each transaction between
the anonymous users is stored in a database and spent money is marked with digital
signatures.
Bitcoin is an alternative or at least a new approach to exchanging money via Internet.

http://www.gnupg.org/
http://bitcoin.org/

3
Example of McEliece and Niederreiter PKS based on

Goppa Codes using Sage

Sage is a free open source alternative to common mathematics software. Sage — short
for Software for Algebra and Geometry Experimentation — is a volunteer based project
whose source code is laid open for inspection, see http://www.sagemath.org.

Using the idea of implementing code-based cryptosystems in Sage by Risse [32], this
section will provide two examples of the best known code-based PKS, namely McEliece
and Niederreiter.

We directly use some methods from the paper by Risse but at the same time extend others
to a fully working implementation. We will construct a Goppa code from an irreducible
Goppa polynomial with the computer algebra system Sage like in the paper. Furthermore
we present a full implementation of Patterson’s decoding algorithm for Goppa codes.
Other than in [32] our environment is finally used to set up and demonstrate both, the
McEliece and the Niederreiter PKS.

The Python-like Sage code will be displayed along with the output of the calculations.

The code presented below will on the one hand provide a Sage implementation of Goppa
codes as well as methods for experimentation with the two code-based public key cryp-
tosystems. At the same time the code will be evaluated and is available for instant type-
setting in LATEX— a handy feature. The calculations are done by Sage and the output can
be easily displayed. This is yet another demonstration how different OpenSource projects
marvelously interact, namely Sage and LATEXvia the sagetex package.

Coming back to the example, we use the following parameters conformal with the notation
of Section 1.4.2 to construct a binary Goppa code C over F := F2m , q = 2 with the
codeword length n = 8 and the degree of the field extension m = 3. The choice t = 2 < n

m

in combination with a monic, irreducible polynomial g of degree deg g = t will yield a
code of dimension k := 2 ≥ n− tm and minimal distance d = 5 ≥ 2t+ 1. This results in
the error correcting capability 2 = bd−1

2
c = b5−1

2
c of the code C.

n = 8; m = 3; k = 2; t = 2; q = 2

A = GF(q); # binary alphabet

F.<beta> = GF(q^m); # field with primitive element beta

49

http://www.sagemath.org

50 CHAPTER 3. EXAMPLE OF PKS BASED ON GOPPA CODES USING SAGE

Ring = PolynomialRing(F,’z’); # polynomial ring over F in z

z = Ring.gen(); # the generator z of Ring

g = z^t+z+1; # Goppa polynomial of degree t

L = [0,1,beta,beta^2,beta^3,beta^4,beta^5,beta^6]; # locator set

The primitive element β fulfills β3 = β + 1, as can be seen when looking closer at the
support for the Goppa code L = [0, 1, β, β2, β + 1, β2 + β, β2 + β + 1, β2 + 1] which is a
full enumeration of all the elements in F .

def goppaCheck(g):

for i in range(n):

if g(L[i])==F(0):

print ’alarm: g(x^’+str(i)+’)=0’;

return False;

return g.is_irreducible();

We see the Goppa polynomial g(z) = z2 +z+1 is irreducible in F [z] and g(γ) 6= 0, ∀γ ∈ L
because goppaCheck(g) returns True. The next step is to define the parity check matrix
of the generalized Reed-Solomon code as in Equation (1.4).

H_GRS = matrix([[L[j]^(i) for j in range(n)] for i in range(k)]);

H_GRS = H_GRS*diagonal_matrix([1/g(L[i]) for i in range(n)]);

HGRS =

(
1 1 β2 β2 + β β2 β β β2 + β
0 1 β + 1 β2 + 1 β2 + β + 1 β2 + β + 1 β2 + 1 β + 1

)
This next Sage block will compute the parity check matrix of C, which will be used for
our example. The columns are expanded by substituting the field elements γ ∈ F = F2m

with their representation over the alphabet A = F2 like in Section 1.3.5 about subfield
subcodes.

H_Goppa = matrix(A,m*H_GRS.nrows(),H_GRS.ncols());

for i in range(H_GRS.nrows()):

for j in range(H_GRS.ncols()):

be = bin(eval(H_GRS[i,j].int_repr()))[2:];

be = ’0’*(m-len(be))+be; be = list(be);

H_Goppa[m*i:m*(i+1),j] = vector(map(int,be));

HGoppa =


0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1


Now we are able to compute a generator matrix GGoppa as right kernel of HGoppa.

51

Krnl = H_Goppa.right_kernel();

G_Goppa = Krnl.basis_matrix();

GGoppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
The following construction shows that one would get the same code if this alternative
parity check matrix is used. The notation HCXY is taken from the proof of Theorem 1.15.

H_CXY = matrix([[1,0],[1,1]]);

H_CXY = H_CXY*H_GRS;

H_CXYGoppa = matrix(A,m*H_CXY.nrows(),H_CXY.ncols());

for i in range(H_CXY.nrows()):

for j in range(H_CXY.ncols()):

be = bin(eval(H_CXY[i,j].int_repr()))[2:];

be = ’0’*(m-len(be))+be; be = list(be);

H_CXYGoppa[m*i:m*(i+1),j] = vector(map(int,be));

Krnl = H_CXYGoppa.right_kernel();

G_CXYGoppa = Krnl.basis_matrix();

HCXY =

(
1 1 β2 β2 + β β2 β β β2 + β
1 0 β2 + β + 1 β + 1 β + 1 β2 + 1 β2 + β + 1 β2 + 1

)

HCXY Goppa =


0 0 1 1 1 0 0 1
0 0 0 1 0 1 1 1
1 1 0 0 0 0 0 0
0 0 1 0 0 1 1 1
0 0 1 1 1 0 1 0
1 0 1 1 1 1 1 1


The same code C is obtained from both parity check matrices because their respective
null-spaces — the two generator matrices — are equal:

GCXY Goppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
=

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
= GGoppa.

Since the field F has characteristic 2, Frobenius’ automorphism makes the “freshmen’s
dream” come true — the equation (a + b)2 = a2 + b2 is valid ∀a, b ∈ F . This fact will
be used by Patterson’s algorithm, to be more specific when a polynomial p(z) ∈ F [z] is
written as a sum of even and odd parts p(z) = a(z)2 + zb(z)2.
Before giving some procedures that are needed for the calculations in our example, first
some words about solving the key equation (1.11) and therefore especially Equation (1.15)
dealt with in Section 1.4.2.

52 CHAPTER 3. EXAMPLE OF PKS BASED ON GOPPA CODES USING SAGE

The call modifiedEEA(a,b, stop) (with stop=false) computes (d, u, v) that satisfy
u · a + v · b = gcd(a, b) = d — this is the common extended Euclidean algorithm. The
values returned by the modifiedEEA(a,b, stop) in the case of stopping the EEA earlier
(stop=false) are permuted (u, d, v), as the thorough reader has noticed. Despite the
different notation in this implementation oriented chapter and the chapter discussing the
mathematical theory earlier, it is clear that solutions u, d to d = u · a mod b are to be
found. In Section 1.4.2 Equation (1.15) looked like this: u(z) ≡ v(z)r(z) mod G(z), with
unknown u(z), v(z).
Here we do not care about v, since the equation u · a+ v · b = d will be regarded mod b.
The variables u, lastu respectively r, lastr in modifiedEEA only store the latest, im-
portant values of the two sequences zh respectively rh that have been discussed in detail
in Section 1.4.2 satisfying the degree restrictions as in Equation (1.16). To resolve possi-
ble (but unfortunately unavoidable) confusion of notations through different chapters, we
summarize:

zj −→ u(z) −→d,
rj −→ v(z) −→u,

hence it is correct to return the values accordingly. Here are the procedures:

def split(p): # Splits the polynomial p into even part u and odd part v,

such that p(z) = u(z)^2 + z*v(z)^2 holds.

F = p.parent()

u = F([sqrt(c) for c in p.list()[0::2]]);

v = F([sqrt(c) for c in p.list()[1::2]]);

return (u,v);

def modifiedEEA(a, b, stop):

deg=a.degree();

r = b; lastr = a;

u = 0; lastu = 1;

v = 1; lastv = 0;

while r <> 0:

(lastr, (q, r)) = r, lastr.quo_rem(r);

(u, lastu) = (lastu - q*u, u);

(v, lastv) = (lastv - q*v, v);

test stop condition: Are the degrees reached?

bool = u.degree()<=floor((deg-1)/2) and r.degree()<=floor(deg/2);

if (stop and bool):

(u,d,v)=(lastr, lastu, lastv);

53

here: deg u + deg d = deg b = t and ua=d mod b

return (d,u,v);

(d,u,v)=(lastr, lastu, lastv);

here the return values satisfy: d=ua+vb

return (d,u,v);

def inverse(p,g): # Returns the inverse of polynomial p mod g(z)

(d,a,b) = xgcd(p,g);

return a.mod(g);

def checkCorrectness(x,y):

if (y==x):

print ’corrected received word==sent word’;

return true;

print ’alarm: corrected received word=’,y,’<>’,x,’=sent word’;

return false;

When trying to provide a fully functional implementation of Patterson’s algorithm in
Sage, one needs to work with a modified extended Euclidean algorithm. We are now able
to present a working algebraic decoding algorithm based on Patterson’s idea implemented
in Sage. The routine patterson implements Algorithm 1 given in Section 1.4.2.

def patterson(y, Mat, binMat, McEliece):

e = vector(A,n); # empty length n error vector

z = Ring.gen(); # generator z

b = F.gen(); # generator beta

if(binMat):

syn = y; # conversion of binary representation to field elements

syn = syn.list(); syn = syn[::-1]; # reverse list

s = 0; pot = 1; # build syndrome polynomial s in F[z] of degree <k

for i in range(k):

tmp = 0; bj = 1;

for j in range(m):

##syn = (beta^(m-1) ... beta^2 beta 1 | . . .)

#mi = k-i-1; tmp += syn[mi*m+j]*bj;

syn = (1 beta beta^2 ... beta^(m-1) | . . .)

tmp += syn[i*m+j]*bj;

bj *= b; # beta powers

54 CHAPTER 3. EXAMPLE OF PKS BASED ON GOPPA CODES USING SAGE

s += pot*tmp;

pot *= z; # z powers for syn = (1 | z | . . . | z^(k-1))

else:

syn = Mat*y; # compute syndrome using the matrix Mat over F

syn = syn.list();

syn = syn[::-1]; # reverse list

s = Ring(syn); # represent s as polynomial of degree <k in F[z]

if s.is_zero(): # no errors occurred

if(McEliece):

return y;

return e;

compute the error locator polynomial sigma

sigma = z; # initialize sigma with z

T = inverse(s,g);

if T<>sigma:

(g0,g1) = split(g);

w = g0*inverse(g1,g); w = w.mod(g);

(T0,T1) = split(T+z);

R = (T0+w*T1).mod(g);

(d,u,v) = modifiedEEA(g,R, true);

sigma = u^2+ z*v^2; print ’sigma =’,sigma;

mark zeros of sigma as errors

for i in range(n):

if sigma(L[i])==F(0): # an error occurred at position i

e[i] = 1;

if(McEliece):

return y+e; # return corrected vector

return e; # else: return error vector

The full implementation of Patterson’s algorithm for binary Goppa codes along with
definitions to encode plain text using McEliece’s idea and a routine to check the correctness
of our calculations enables us to start the first example.

3.1. MCELIECE PKS 55

3.1 McEliece PKS

The next two procedures help adding errors and therefore encrypting messages according
to McEliece’s idea.

def errors(t,n): # Adds t random errors to a vector of length n.

e = vector(A,n);

for i in range(t):

j = randint(0,n-1); e[j] = 1;

return e;

def encryptMcEliece(u): # Encrypts the message u

c = u*G_pub; # with the public key G_pub

e = errors(t,n); # and adds t errors

y = c+e;

return y,e;

To set up the McEliece PKS (see Section 2.2.1) we need to define the private key consisting
of two matrices S and P.

S = matrix(A,k, [randint(0,1) for i in range(k^2)]);

while (rank(S)<k):

S = matrix(A,k, [randint(0,1) for i in range(k^2)]);

rng = range(n); P = matrix(A,n);

for i in range(n):

p = floor(len(rng)*random());

P[i,rng[p]] = 1; rng = rng[:p]+rng[p+1:];

S =

(
1 1
0 1

)
, P =



0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0


G_pub = S*G_Goppa*P;

Next we define the public matrix Gpub =

(
0 1 0 1 0 1 1 1
1 0 1 0 1 1 1 1

)
with the help of S

and P and let Alice generate a secret message u ∈ Ak in order to transmit it to Bob.

u = vector(A,[randint(0,1) for i in range(k)]); print ’message u=’,u;

y,e = encryptMcEliece(u); print ’encrypted message y=’,y;

56 CHAPTER 3. EXAMPLE OF PKS BASED ON GOPPA CODES USING SAGE

The Sage output is the secret message u=(0, 1) and moreover we are now able to transmit
the encrypted message y=(1, 0, 0, 0, 1, 1, 1, 0) over a public channel.
Before we will proceed with the demonstration how the receiver corrects the errors, some
words on how to retrieve the information bits after that. We have to take a look at the

generator matrix GGoppa =

(
1 1 0 0 1 0 1 1
0 0 1 1 1 1 1 1

)
. We see from its structure that

the second and third column are “systematic”. We access the information bits by reading
the (zero-based indices) 1 and 2, respectively. This is one issue that is not dealt with in a
generic way for arbitrary Goppa codes with different parameters that have been specified
in the beginning and hence has to be adapted individually for every case.
Bob receives y and decrypts the message using his private key P, S — or better the once
and for all prepared inverted matrices P−1, S−1 — and the parity check matrix HCXY .
The patterson method performs the decryption given the correct input for the McEliece
setting.

Bob receives y and decrypts it

print ’Bob receives y=’,y;

yP = y*P.inverse(); print ’y*P^{-1}=’,yP;

McEliece=true, thus returns the already corrected codeword

binMat=false, thus uses the provided Mat=H_CXY for syndrome calculation

yD = patterson(yP, H_CXY, false, true); print ’Bob decodes yD=’,yD;

mm = vector(A,[yD[1],yD[2]]); # information bits are in positions 1 and 2

yS = mm*S.inverse(); print ’mm*S^{-1}=’,yS;

checkCorrectness(yS,u);

The output of our McEliece example is
Bob receives y: y = (1, 0, 0, 0, 1, 1, 1, 0)

y*P^{-1}: yP = (0, 0, 1, 0, 0, 1, 1, 1)
Bob decodes yD: yD = (0, 0, 1, 1, 1, 1, 1, 1)

scrambled information bits mm: (0, 1)
mm*S^{-1}: yS = (0, 1)

and finally checkCorrectness(yS,u) yields: True — the decryption u = (0, 1) → yS =
(0, 1) was successful and the example is complete!

3.2 Niederreiter PKS

As in the previous example, we are able to use the patterson decoding method presented
above to show how the Niederreiter PKS (see Section 2.2.2) works. We use the same pa-
rameters as before and thus work with the same Goppa code C. In this case the syndrome
is input to the decoding algorithm, which thus needed to be adapted to handle decoding
in the case without computing the syndrome using the parity check matrix as a first step.
The following definitions help to carry out the calculations so we can set up the Nieder-
reiter example.

3.2. NIEDERREITER PKS 57

def weightt(t): # admissible words are length n, weight t column vectors

e = vector(A,n);

for i in range(t):

j = randint(0,n-1);

while e[j]==1:

j = randint(0,n-1);

e[j] = 1;

return e;

def encryptNiederreiter(u):

c = u*H_pub.transpose();

return c;

The construction of the public parity check matrix Hpub requires two private matrices M
and P that hide the Goppa code structure from the public. M is a random regular matrix
and P is a permutation thus we proceed constructing the public key as a disguised version
of HCXY Goppa — the parity check matrix of C.

nk = (n-k);

M = matrix(A,nk, [randint(0,1) for i in range(nk^2)]);

while (rank(M)<nk):

M = matrix(A,nk, [randint(0,1) for i in range(nk^2)]);

rng = range(n); P = matrix(A,n);

for i in range(n):

p = floor(len(rng)*random());

P[i,rng[p]] = 1; rng = rng[:p]+rng[p+1:];

H_pub = M*H_CXYGoppa*P;

We compute the public key Hpub and store the private key — or again for a performance
gain — the inverse matrices of M respectively P for decoding reasons:

M =


0 0 1 1 1 1
1 1 1 1 1 0
0 1 1 1 1 1
0 1 0 0 0 1
1 0 1 0 0 1
1 0 1 0 1 1

 , P =



0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0


.

58 CHAPTER 3. EXAMPLE OF PKS BASED ON GOPPA CODES USING SAGE

Hpub = M ·HCXY Goppa · P =


0 0 0 1 0 1 1 0
1 0 0 1 1 1 1 1
1 0 1 1 1 0 1 0
0 1 0 0 0 0 1 1
0 0 1 1 0 1 0 0
1 1 1 1 0 0 1 0

 .

We let Alice generate some admissible plain text, which is a message encoded as vector u
of length n = 8 and weight t = 2 in the Niederreiter setting.

Assume the message M has been encoded as vector u:

u = weightt(t); print ’message u=’, u;

Alice encrypts u with Bob’s H_pub and sends y to him

y = encryptNiederreiter(u); print ’encrypted message y=’,y;

Bob receives y and decrypts it to a vector u and hence M

print ’Bob receives y=’,y;

yM = M.inverse()*y; print ’M^{-1}*y=’,yM;

yM can be interpreted as syndrome of the sought after error word

McEliece=false, thus returns the error word necessary here

xD = patterson(yM, G_Goppa, true, false); print ’Bob decodes to xD=’,xD;

x = P.inverse()*xD; print ’P^{-1}*xD=’,x;

checkCorrectness(u,x);

The output of our Niederreiter example is
Bob receives y: y = (0, 1, 1, 1, 1, 1)

M^{-1}*y: yM = (0, 1, 1, 1, 0, 0)
Bob decodes xD: xD = (1, 0, 0, 0, 0, 1, 0, 0)

P^{-1}*xD: xS = (0, 0, 1, 0, 0, 0, 0, 1)
and finally checkCorrectness(u,x) yields: True — the decryption was successful!
We summarize:

u = (0, 0, 1, 0, 0, 0, 0, 1)→ xS = (0, 0, 1, 0, 0, 0, 0, 1) ,

which completes the example.

4
Quantum Computing

In the past the gain in computing power had a lot to do with miniaturization of the com-
puter’s components. We will soon be at the stage where it is not possible to further push
this development because of physical limitations. No new, groundbreaking ideas but hard
optimization work and thorough fine tuning of computer chips led to the improvements
in the past decades.

Recently, in 2012, researchers from IBM Research Division at “Almaden Research Center”
[21] were able to show that the incredible small number of 12 atoms are sufficient to store
1 bit of classical information.

In the introductory book [42, Ch. 1.1] Williams extrapolates the trend in miniaturization
and claims that the one atom per bit storage requirement will soon be reached — around
the year 2020. On such a small scale the best fitting model of physics tells us that quantum
effects take over. Classical physics, which is good to explain macroscopic phenomena, is
not appropriate to describe small scale particles — this is the domain of quantum physics.

If we desire further improvements of computational performance we need to control the
negative side effects that occur at the quantum scale or exchange the classical approach
that uses electronic circuits. This is why researchers discuss new computer architectures
and — apart from other possible candidates — try to establish the quantum computer,
which uses quantum effects in a new, beneficial way to carry out computations.

The focus of this thesis is not on physics, nevertheless some results shall be presented in
this chapter to motivate the efforts made in investigating new cryptosystems and cryptan-
alyzing common ones. Furthermore, the question if classical cryptosystems are still needed
once a functional quantum computation infrastructure is established, is dealt with.

A drawback we will see — similar to the previous discussion of how to establish secure
information processing and transmission classically — is the gap between the theory and
the application side. Unfortunately, the theory leaves some big questions unanswered,
such that most of security proofs are based on assumptions that seem likely to be true
but remain uncertain. Therefore we have to believe that the known attacks against a
system cryptographers recommend parameters for are really the best so far and cannot
be circumvented easily. On the other hand a possible solution to this dilemma providing
perfect secrecy — namely quantum cryptography (see Section 4.6) — exists, but still we
have to believe in the currently best fitting physical model of our world. As Williams puts

59

60 CHAPTER 4. QUANTUM COMPUTING

it in [42, Ch. 13.3.2]: “...the laws of quantum physics are a fundamental aspect of nature,
verified experimentally to an exceedingly high level of precision, and are impossible to
circumvent. If they were, then all sorts of bizarre implications would ensue, such as the
ability to communicate messages faster than the speed of light”.

4.1 Quantum Bit

The fundamental difference of classical information and quantum information is that the
unit of quantum information — the quantum bit (or qubit for short) — is not restricted
to just two states, say 0 and 1, like the classical bit. A qubit can represent 0 and 1, but
also much more.

The theoretical model of a qubit can be based on any quantum system that has two
distinguishable states, which do not change uncontrollably.

To read the value of a qubit, the quantum system needs to be measured. The laws of
quantum mechanics tell us that measurement may change the system. Therein lies the
main difference of the macroscopic storage and manipulation of bits and the microscopic
implementation of a qubit.

Let |0〉 and |1〉 denote (in Bra-ket or Dirac notation) the two basis states of a fixed
quantum system. Because of the quantum system’s subatomic size, quantum mechanics
shows us that a qubit is in more than just one of the two states |0〉 and |1〉. It is in both
states simultaneously with a certain probability. The value of a qubit is fixed — to just
one of those two distinct states — upon measurement.

Formally, a qubit is in a superposition of the basis states, say

|ψ〉 = a0 |0〉+ a1 |1〉, |a0|2 + |a1|2 = 1

with complex coefficients a0, a1 ∈ C. Measurement of a qubit in the state |ψ〉 does not
give the coefficients a0, a1 to fully determine the current state; instead it yields only one
of the basis states. The state |0〉 is obtained with probability |a0|2 and hence |1〉 with
probability |a1|2 = 1 − |a0|2. Mathematically a qubit is modeled as a vector of length
1 in a 2-dimensional complex vector space and its canonical basis

{
|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)}
is called computational basis in this context. In this manner we can easily extend this
interpretation to n-qubit quantum systems:

Let |0〉, . . . , |j〉, . . . , |2n − 1〉 denote the basis states of a n-qubit quantum system, hence
they represent vectors in C2 × C2 × · · · × C2︸ ︷︷ ︸

n times

= CN , where N = 2n. Following [42, 1.4.1]

we write |j〉 for the computational basis state corresponding to the decimal number j.
Sometimes it is handier to use the binary representation that is filled with 0 from the left

4.1. QUANTUM BIT 61

to length n if necessary.

|0dec〉 = |0 . . . 000bin〉 = (1, 0, 0, 0, . . . , 0)T

|1dec〉 = |0 . . . 001bin〉 = (0, 1, 0, 0, . . . , 0)T

|2dec〉 = |0 . . . 010bin〉 = (0, 0, 1, 0, . . . , 0)T

|3dec〉 = |0 . . . 011bin〉 = (0, 0, 0, 1, . . . , 0)T

...

|(N − 1)dec〉 = | 1 . . . 111︸ ︷︷ ︸
n

bin〉 = (0, 0, 0, 0, . . . , 1︸ ︷︷ ︸
N=2n

)T

A general state in such an n-qubit quantum system is, analogously to the 1-qubit case, a
length 1 vector with complex coefficients:

|ψ〉 =
N−1∑
j=0

aj|j〉, aj ∈ C,
N−1∑
j=0

|aj|2 = 1.

We remark that by using quantum registers with more than one qubit, a new phenomenon
called entanglement appears. Such composite quantum systems can be in states that are
not representable as a product of its component systems states and are thus said to
be “entangled”. At the end of Chapter 2.2.8 in their standard work [26] the authors
Nielsen and Chuang go so far as to say: “For reasons which nobody fully understands,
entangled states play a crucial role in quantum computation”, which shows the importance
of research in this emerging area.
Some seemingly inherent properties of the well known information theoretic unit bit turns
out to be valid in the macroscopic domain of classical information processing only. They
are not necessarily true at the quantum scale; in fact some properties may seem unfamiliar
from a macroscopic point of view since they are not true anymore. Table 4.1 contrasts
some classical assumptions with the quantum mechanical facts (see [42, Table 1.2]).

Assumptions: Classically true statement... ...false on a quantum scale

A bit always has a definite value. Definite only value after it is read.
A bit can only be 0 or 1. A qubit can be in a superposition.
A bit can be copied not affecting its value. A qubit in an unknown state

can’t be copied without necessarily
changing its state.

A bit can be read without affecting its value. Reading a qubit in a superposition
of 0 and 1 will change it.

Reading one bit in the computer has no affect
on any other (unread) bits in the memory.

Reading one entangled qubit will
necessarily affect the other qubit.

To compute the result of a computation, one
must run the computer.

False, there are architectures that
need not be “turned on” to operate.

Table 4.1: Assumptions about the properties of bits that are no longer true for qubits.

62 CHAPTER 4. QUANTUM COMPUTING

4.2 Quantum Computer

Apart from the theoretical model of a quantum computer and its capability the question
of an actual physical realization arises. To put it short; it seems hard to build a stable,
powerful quantum computer to date. Small scale examples do exist in a lab environment
and still a lot of research is done in this field which may lead to a functional and practical
quantum computer in the near future.
The 2012 physics Nobel prize was awarded to Wineland and Haroche for their “work on
understanding the quantum world — work which may eventually help make quantum
computing possible”.
Wineland [14] put it that way: “To build such a quantum computer is an enormous
practical challenge. One has to satisfy two opposing requirements: the qubits need to
be adequately isolated from their environment in order not to destroy their quantum
properties, yet they must also be able to communicate with the outside world in order to
pass on the results of their calculations. Perhaps the quantum computer will be built in
this century. If so, it will change our lives in the same radical way as the classical computer
transformed life in the last century.”.
DiVincenzo published criteria [12] to determine whether a quantum system meets the
requirements for a practical quantum computer and quantum information. Here are his
“Five (plus two) requirements for the implementation of quantum computation”.

1. A scalable physical system with well characterized qubits; which means the number
of qubits must not be bounded.

2. The ability to initialize the qubits to a simple state, such as |ψ〉 = |00 . . . 0〉.

3. Long relevant decoherence times, much longer than the gate operation time; which
ensures the stability of the system and addresses the possible collapse of states.

4. A universal set of quantum gates; which means there should be a small number of
implemented operations, with which it is possible to model any unitary transforma-
tions — the core of most quantum algorithms.

5. A qubit-specific measurement capability; to read out the result of a computation.

6. The ability to inter-convert stationary and flying qubits; which is important for the
exchange of quantum information.

7. The ability faithfully to transmit flying qubits between specified locations; to process
information over distances.

For an overview about some quite different ideas how to implement qubits, we refer to
[42, Ch. 15]. There, a few possible realizations are discussed and it is shown that quantum
computers based on these quantum systems are polynomially equivalent to one another.
This means one can simulate any other quantum computer (efficiently) once a particular
architecture has been successfully built.
Finally, quantum computers require quantum algorithms to operate intelligible upon infor-
mation. This is where mathematicians once more come into play. Assuming the existence

4.3. QUANTUM ALGORITHMS 63

of a functional quantum computer, mathematicians started to develop algorithms suit-
able to perform tasks on this new computer architecture some time ago. It turns out that
some problems can be solved in significantly less running time by quantum algorithms
compared to classical algorithms deployed on classical electronics circuit hardware.

Quantum Parallelism

What is the main property that makes a quantum computer so powerful?
A quantum computer represents 2n values using n qubits. A quantum gate, given as
some reversible function f , applied to these n qubit therefore takes O(n) time. Preceding
measurement to read the result of this computation at this stage would yield only one
value f(x) for some value x, although theoretically f has been evaluated for every one
of the 2n input values. Thus quantum parallelism, as this phenomenon is called, on its
own is not immediately useful. Quantum parallelism needs to be combined with another
inherent property of quantum systems — interference.
If there are alternative, correct solutions to a computation, their interference can be used
in a clever way to increase the probability to measure its value. We refer to [42, Ch. 1.4.3]
for a detailed outline and the modern view that there exists a superposition of values
stored in a quantum register which influences the probability of measuring a specific
value.
As Nielsen and Chuang put it in their book [26, Ch. 1.4.3]: “The difference is that in
a classical computer [these two] alternatives forever exclude one another; in a quantum
computer it is possible for the [two] alternatives to interfere with one another to yield
some global property of the function f”.
A classical computer on the other hand with a n bit register needs 2n processors working
in parallel doing 1 operation. Equivalently, 1 processor can be used repeating some cal-
culation O(2n) times in order to perform a single gate operation on each of the 2n values
representable by n bits.
The authors Rieffel and Polak of the survey [31] describe it this way: “Quantum parallelism
circumvents the time/space trade-off of classical parallelism through its ability to provide
an exponential amount of computational space in a linear amount of physical space”.
Exploiting these properties of quantum systems intelligibly leads to the computational
superiority of quantum computers over the classical computer architecture. We remark
that the set of functions that are computable by quantum computers is the same as the
functions that are computable by classical computers. In this sense these two architectures
are equally powerful.

4.3 Quantum Algorithms

Analogously to classical computing, where manipulation of bits are necessary to perform
computations, quantum computations requires the controlled manipulation of qubits. The
basic manipulations of qubits are called quantum circuits or quantum gates and are uni-
tary transformations speaking in mathematical terms. A sequence of quantum gates, with
the goal to compute a certain function, is then called quantum algorithm.

64 CHAPTER 4. QUANTUM COMPUTING

Instead listing many different quantum algorithms, we will only show the most important
algorithms or their main ideas. The essence of quantum computation should become
visible here. We first provide an early predecessor that showed the astonishing capability
of quantum computers compared to classical computers, which initially gave rise to this
field.

4.3.1 Algorithm of Deutsch-Jozsa

Deutsch’s algorithm is a deterministic quantum algorithm, to decide whether a function
is constant or balanced. The formulation in the easiest case is as follows.

Let f : {0, 1} → {0, 1} be a function operating on bits. f is said to be constant if
f(0) = f(1) ∈ {0, 1} and else balanced, since 0 and 1 both appear in the image.

Although Deutsch’s algorithm is of no great practical relevance, it has shown the capability
of quantum computers to solve certain problems faster than classical computers.

First we need to make the oracle function f (no full definition available but an algorithm
providing the result upon giving an input) to be a unitary quantum gate — an operation
suitable for a quantum computer. Thus define the invertible function (see [42, 1.7.2])

Uf |x〉|y〉 7→ |x〉|f(x)⊕ y〉,

where ⊕ denotes the XOR operation defined as 1⊕ 1 = 0⊕ 0 := 0 and 1⊕ 0 = 0⊕ 1 := 1.
This is a function from {0, 1}2 to {0, 1}2 called “f-controlled-NOT” gate (or CNOT for
short).

The idea of Deutsch was that instead of classically evaluating the function 2 times in order
to be sure which case — balanced or constant — it is, to use the following equivalence in
a clever way to achieve the same result: f(0) = f(1)⇔ f(0)⊕ f(1) = 0.

Another tool, in preparation for the first quantum algorithm here in this thesis, is the

Hadamard transform written as matrix H := 1√
2

(
1 1
1 −1

)
. This means the two basis

states |0〉, |1〉 are mapped on an equally weighted superposition state H|0〉 = H
(

1
0

)
=

1√
2
(|0〉 + |1〉) and H|1〉 = H

(
0
1

)
= 1√

2
(|0〉 − |1〉). Since H = HT = H−1 is an unitary

matrix, we have:

H
1√
2

(|0〉 − |1〉) = HH|1〉 = HH−1|1〉 = |1〉, (4.1)

H
1√
2

(|0〉+ |1〉) = HH|0〉 = HH−1|0〉 = |0〉. (4.2)

The idea of creating these superpositions of all currently representable values can be
generalized using n Hadamard gates on a register holding n qubits to establish such an
equally weighted superposition of all 0, 1, . . . , 2n − 1 values.

The algorithm (basically taken from [39]) can be stated like this:

4.3. QUANTUM ALGORITHMS 65

Initialize |ψ1〉 = |x〉|y〉 ← |0〉|1〉, and apply the Hadamard transform on both registers.

|ψ2〉 = |x〉|y〉 ← H|x〉H|y〉

=
1√
2

(|0〉+ |1〉) · 1√
2

(|0〉 − |1〉)

=
1

2

(
|0〉|0〉 − |0〉|1〉+ |1〉|0〉 − |1〉|1〉

)
.

|ψ3〉 = |x〉|y〉 ← Uf |x〉|y〉

=
1

2

(
|0〉|0⊕ f(0)〉 − |0〉|1⊕ f(0)〉

)
+

+
1

2

(
|1〉|0⊕ f(1)〉 − |1〉|1⊕ f(1)〉

)
=

=
1

2

(
|0〉 · (|f(0)〉 − |1⊕ f(0)〉)

)
+

+
1

2

(
|1〉 · (|f(1)〉 − |1⊕ f(1)〉)

)
=

=
1

2

(
(−1)f(0)|0〉 · (|0〉 − |1〉) + (−1)f(1)|1〉 · (|0〉 − |1〉)

)
=

=
1

2

(
(−1)f(0)|0〉+ (−1)f(1)|1〉

)
· (|0〉 − |1〉).

|ψ3〉 is the state after evaluating Uf , which can be cleverly rewritten, as can be seen above
to yield the result in the last line. We see that |ψ3〉 = ±1

2
(|0〉+ |1〉) · (|0〉− |1〉) if and only

if f is constant and |ψ3〉 = ±1
2
(|0〉 − |1〉) · (|0〉 − |1〉) otherwise.

We apply the Hadamard gate to the first register of |ψ3〉, say |ψ4〉 = |x〉 ← H|x〉. The fact
mentioned in Equation (4.2) tells us that if we measure |x〉 and the output is |0〉, then f
is definitely a constant function and balanced otherwise. This trick allows to decide the
Deutsch problem by evaluating f once instead of 2 times.

The appealing strength of this algorithm can be seen, when it is generalized to the n = 2k
qubits version called after Deutsch-Jozsa. Let f : {0, 1}n → {0, 1} and assume f is
guaranteed to be either constant or balanced, meaning exactly n

2
= k values are mapped

to zero and the rest (again k values) therefore to 1. The algorithm (again adapted from
[39]) can be stated as follows, where as usual N = 2n:

Initialize a (n + 1) qubit register with zeros but set the last qubit to 1. Next apply the
Hadamard transform H on each qubit individually and regard the first n qubits separately.

66 CHAPTER 4. QUANTUM COMPUTING

|ψ1〉 = |x〉|y〉 ← |0〉|0〉 . . . |0〉|1〉.
|ψ2〉 = |x〉|y〉 ← H|0〉H|0〉 . . . H|0〉H|1〉

= (H ⊗H ⊗ · · · ⊗H)|x〉H|1〉 =

=
1√
N

N−1∑
x=0

|x〉 · 1√
2

(|0〉 − |1〉) =

=
1√
2N

N−1∑
x=0

|x〉 · (|0〉 − |1〉).

|ψ3〉 = |x〉|y〉 ← Uf |x〉|y〉

=
1√
2N

N−1∑
x=0

|x〉(|f(x)〉 − |1⊕ f(x)〉) =

=
1√
2N

N−1∑
x=0

(−1)f(x)|x〉(|0〉 − |1〉) =

=

(
1√
N

N−1∑
x=0

(−1)f(x)|x〉

)
· 1√

2
(|0〉 − |1〉).

|ψ4〉 = |x〉|y〉 ← (H ⊗H ⊗ · · · ⊗H)|x〉I|y〉

=

(
1√
N

N−1∑
x=0

(−1)f(x) 1√
N

N−1∑
z=0

(−1)g(x,z)|z〉

)
· 1√

2
(|0〉 − |1〉) =

=

(
1

N

N−1∑
z=0

N−1∑
x=0

(−1)g(x,z)+f(x)|z〉

)
· 1√

2
(|0〉 − |1〉).

In the fourth step, at the assignment of |ψ4〉, we apply Hadamard transforms to the first
n qubits again and the identity I to the last qubit leaving it unchanged. The function
g(x, z) := x0z0 + x1z1 + · · ·+ xn−1zn−1 mod 2 is the sum of the bitwise product.

According to Equations (4.1) and (4.2) for x = 0, 1 we can writeH|x〉 = 1√
2
(|0〉+(−1)x|1〉).

Generalizing this idea to a product of 2 Hadamard transformed qubits (and by induction
to a product of n Hadamard transformed qubits) yields:

H|x〉H|z〉 = H|x〉 ⊗H|z〉 =
1√
2

(|0〉+ (−1)x|1〉) · 1√
2

(|0〉+ (−1)z|1〉) =

=
1

2
((−1)0+0|00〉+ (−1)x+0|10〉) + (−1)0+z|01〉) + (−1)x+z|11〉).

Thus the final step in determining whether f is balanced or constant is to measure the
contents of the first register. The claim is that |z〉 = |00 . . . 0〉 if and only if f is constant
and some other result |z〉 6= |00 . . . 0〉 if f is balanced.

4.3. QUANTUM ALGORITHMS 67

The amplitude of |z〉 = |00 . . . 0〉 is given by

∣∣∣∣∣ 1

N

N−1∑
x=0

(−1)g(x,z)+f(x)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

N

N−1∑
x=0

(−1)f(x)

∣∣∣∣∣
2

because g(x, z) = 0 here. We directly observe that a constant value f(x) = 0, ∀x, respec-
tively f(x) = 1, ∀x yields | ± 1|2 = 1 — certainty to measure |z〉 = |00 . . . 0〉!
In the case that f is balanced the 1 and the (−1) in the sum will cancel each other to
yield a zero possibility of measuring |z〉 = |00 . . . 0〉.
Hence, this quantum algorithm needs only one evaluation of f (or more precisely Uf) in
step three and some overhead to answer the Deutsch-Jozsa problem.

Classically f needs to be evaluated 1
2
2n + 1 = 2n−1 + 1 times to answer the Deutsch-Jozsa

problem. We saw that the generalized quantum algorithm for f with n qubits input decides
whether it is constant or balanced with only 1 function evaluation — a huge improvement
compared to the exponential number of 2n−1 + 1 evaluations in the classical case!

4.3.2 Quantum Fourier Transform

Let |0〉, |1〉, . . . , |N − 1〉 denote the N basis states and let ωN := e
2πi
N ∈ C be the N−th

root of unity, which means ωkN = 1 for k = N (and k = 0 of course) but ωkN 6= 1 for
0 < k < N . Since it allows an easier description we assume N = 2n.

We represent the quantum state |ψ〉 =
∑N−1

j=0 aj|j〉 as a vector of the coefficients in

the computational basis (a0, a1, . . . , aj, . . . , aN−1)T ∈ CN and additionally require the

amplitudes to be normalized
∑N−1

j=0 |aj|2 = 1.

The quantum Fourier transform (QFT) can be viewed as the discrete Fourier transform
(DFT) with a normalization factor. As well as the DFT we can write the QFT as matrix:

F =
1√
N


ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
...

. . .
...

ω
(N−1)·0
N ω

(N−1)·1
N . . . ω

(N−1)·(N−1)
N

 .

It turns out the QFT is unitary F−1 = F T and it is thus guaranteed to be implementable
on a quantum computer.

The QFT is defined to act on the basis states |j〉, 0 ≤ j < N in the following way

68 CHAPTER 4. QUANTUM COMPUTING

(compare with Section 4.1 for the basis state representation as a vector):

QFTN |j〉 := F · (0, . . . , 0, 1, 0 . . . , 0)T = (4.3)

=
1√
N

N−1∑
k=0

ωk·jN |k〉 = (4.4)

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

ω
j·(2n

∑n
l=1 kl2

−l)
N |k1k2 . . . kn〉 = (4.5)

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
1∑

kn=0

n∏
l=1

e(2πijkl2
−l)|kl〉 = (4.6)

=
1√
N

n∏
l=1

(
1∑

kl=0

e(2πijkl2
−l)|kl〉

)
= (4.7)

=
1√
N

n∏
l=1

(
|0〉+ ωj

2l
|1〉
)
. (4.8)

The result can be obtained by representing the integers 0 ≤ k < N :

(k)dec = (k1k2 . . . kn)bin =
n∑
l=1

kl2
n−l = 2n

n∑
l=1

kl2
−l

as binary fractions (see [42, 3.4.4]). After a few calculation steps and the fact that ωN :=

e
2πi
N we used for Equation (4.5) we have matrix product representation of QFTN .

Additionally, this result especially shows that the QFT of a computational basis state is
a direct product of single qubit states and is, therefore by definition, unentangled!
Finally, using the linearity of quantum operations we can transform any superposition of
computational basis states. Application of the QFT operator to a quantum state given
as a vector of amplitudes in the basis states will yield “a new state vector (in the same
basis) that will be peaked in probability amplitude at frequencies which contribute the
most strongly to the signal” (see [42, Ch. 3.4.5]) — a quite useful fact!
The fast Fourier transform (FFT) — a clever divide and conquer implementation of
the DFT — can classically be implemented to use O(N logN) = O(2nn) operations,
whereas the QFT can be implemented on a quantum computer using O(log2N) = O(n2)
operations — which is an exponential speedup!
The importance of the QFT lies in the fact that most quantum algorithms that demon-
strated the astonishing exponential speedup compared to their classical counterparts use
this transformation at some point of the computation.

4.3.3 Grover’s Algorithm

The task is that we want to find x = w that satisfies a certain search criterion, under the
N different elements |x〉 of a given unsorted database. The input is a function f given as
an oracle f : {0, 1}N → {0, 1} for a search space of a priori unknown structure as well
as an element w of the search space. The oracle f returns f(w) := 1 if the sought-after

4.3. QUANTUM ALGORITHMS 69

element was found and f(x) := 0, x 6= w otherwise. It is assumed that to call the oracle
for an answer is possible in polynomial time.

Without going into further detail (see [42, Ch. 5.3] for details and a geometric viewpoint),
we state the algorithm in pseudo-code as well as give a comprehensive, non-technical
description here.

Algorithm 9: Grover’s algorithm

Input : Database with N unsorted entries |x〉 and the sought-after |w〉.
Output: The complete database entry matching the search criterion.

Initialize the logN -size qubit register with the state |ψ〉 = 1√
N

∑
x |x〉.

foreach 1 ≤ j ≤ π
√
N

4
do

GroverIteration() ; // uses the ’amplitude amplification’ technique

// Each iteration step increases the probability of measuring |w〉.
end
The final measurement yields a solution with high probability.
return Database entry belonging to |w〉.

We present a metaphor by the spouse of a quantum computer scientist Fuchs that describes
Grover’s algorithm in non-technical terms or even cuisine analogies: “Grover’s quantum
searching technique is like cooking a soufflé. You put the state obtained by quantum
parallelism in a “quantum oven” and let the desired answer rise slowly. Success is almost
guaranteed if you open the oven at just the right time. But the soufflé is very likely to
fall – the amplitude of the correct answer drops to zero – if you open the oven too early.”

The significance of Grover’s algorithm for this thesis lies in its applicability to NP prob-
lems and limitations from a computational complexity theoretic viewpoint. In the article
[1] the authors showed that this general unstructured search problem — in which any
NP problem can be reformulated — stated above can not be solved faster than O(

√
N)

by a quantum computer.

As indicated by Algorithm 9, the iteration step (which can be done in polynomial time)
needs to be carried out O(

√
N) times. Thus Grover provided an algorithm that achieves

this lower bound of running time. The algorithm additionally needs O(logN) storage.

To summarize, Grover found a quantum algorithm that can be applied to anyNP problem
reformulated as a search problem. It yields a quadratic speed-up in the generic case. As
application to cryptography we remark that this algorithm can readily be used to search
for secret keys protecting data of arbitrary cryptosystems. This is a possible threat to
cryptosystems that forces key lengths essentially to be doubled in order to remain at the
same level of security they have been designed to for classical computer architecture.

4.3.4 Shor’s Algorithm

We proceed with one of the most famous quantum algorithms. In the year 1994 Peter
Shor gave the first algorithm for quantum computers with major significance for actual
applications and in 1996 he published an enhanced version of the paper [35].

70 CHAPTER 4. QUANTUM COMPUTING

Generally speaking Shor’s algorithm is a probabilistic algorithm that is composed of two
parts — a classical part and a quantum algorithmic part.

In this section we use the letter N for a non-negative composite integer, which is common
practice in number theory and comes handy for the complexity theory considerations too.
This will not lead to confusion with the N that used to be a power of 2 in previous sections
to make the descriptions easier there.

The Hidden Subgroup Problem

The original algorithm is able to decompose a non-negative composite integer N in its
prime factors on a quantum computer — which is most interesting if N is product of
exactly two prime numbers. The algorithm has a running time considerably shorter than
any known algorithm to do the same task to date and can also be applied to solve the
related DLP. In fact, both problems can be seen as instances of the more general “hidden
subgroup problem” (HSP). Shor’s idea can be used to find the hidden subgroup H ≤ G,
where G is an abelian group.

The Factorization Problem

In this section we present Shor’s algorithm to factorize the number N = 15 as an example.
In general we want to find the prime factors of a non-negative number N .

With a preprocessing step that can done on a classical computer, we can assume that N
is a non-negative composite integer and therefore a product of primes. Additionally —
running polynomial time tests — we can ensure that N is not a prime power. The hardest
case that remains is that N consists of only two of prime factors such that N = pq.
Since Shor’s algorithm is probabilistic, there are cases when it returns the trivial factors
p = 1, q = N . Fortunately the probability for these events is < 1

2
and the algorithm can

be run several times to increase the chances of finding a proper prime factor p.

Classical Part

The classical part of the algorithm consists of well known number theoretic facts and
the correctness is easily verified. During Algorithm 10 the values of x and r satisfy the
following:N |(xr−1) = (x

r
2−1)(x

r
2 +1) andN - (x

r
2−1) because r is the order of x mod N .

Since the condition N - (x
r
2 +1) holds in the last step of the algorithm, there is a common

factor p in N and (x
r
2 − 1). If p = N then N |(x r2 − 1) which contradicts the construction

of r as the order of x. If p = 1 then the extended Euclidean algorithm can be used to
obtain numbers u, v such that (x

r
2 − 1)u + Nv = gcd((x

r
2 − 1), N) = 1 = p. Multiplying

this equation by (x
r
2 + 1) implies that N |(x r2 + 1) — impossible by construction.

Thus Algorithm 10 yields a proper factor p of N .

Quantum Part

The task of the quantum part is, given x ∈ G = (Z∗N , ·) find the order r of x. This is the
number of elements in the generated subgroup H = {xj mod N | j ∈ Z}.

4.3. QUANTUM ALGORITHMS 71

Algorithm 10: Classical part of Shor’s algorithm

Input : N = pq
Output: prime factors p, q

Randomly choose a number x, 1 < x < N .
if 1 < p := gcd(x,N) < N then

return p,N/p ; // It is extremely unlikely to find a factor here.

end
Quantum part of Shor’s algorithm computes the order r of x ∈ Z∗N
// Hence xr ≡ 1 mod N or N |(xr − 1).

if r is odd or x
r
2 ≡ −1 mod N then

Restart the algorithm ; // Another x, 1 < x < N may be suitable.

end

Compute p := gcd(x
r
2 − 1, N) and q := N/p.

// Since (x
r
2 − 1)(x

r
2 + 1) = xr − 1 these p and q are the two factors.

return p, q

Most authors do not present this part in full detail, since it is a bit technical. Instead
they present some versions which cover special cases that simplify the notation. We follow
this attitude and present merely an example for factorizing 15 = 3 · 5, written in terms of
quantum computations. Apart from this we recommend [42, Ch. 6.3] for a more detailed
yet still not fully generic coverage of Shor’s algorithm. Finally, the following example can
be found in [42, Ch. 6.3.2] where additional visualizations are provided.
The reasons for the example-based approach is that first of all it gives a quicker insight
about what happens than to discuss the generic case. Secondly, the number 15 was the
first number to be factored by this algorithm on an actual quantum computer (see the
2001 milestone in Section 4.4). Last but not least, the choice N = 15 is justified because
it is the first number that is not a prime power or even and thus the calculation of the
order is non-trivial.
Let us assume the classical part chose x = 13 at random which is co-prime to N = 15.

1) Choose Q = 2t, such that N2 ≤ Q ≤ 2N2 holds. Q = 28 = 256 fulfills the inequality
and a quantum register |φ1〉 with t = 8 qubits — the domain register — as well as
a second image register |φ2〉 is initialized with zeros:

|ψ1〉 = |φ1〉|φ2〉 = |0〉|0〉.

2) Assign an equally weighted superposition of all Q numbers to the first register |φ1〉:

|ψ2〉 =
1√
Q

Q−1∑
j=0

|j〉 |0〉 .

3) Compute the modular powers f(x) := xj mod N at once for all 0 ≤ j < Q using
quantum parallelism via the quantum gate realization Uf of f :

|ψ3〉 =
1√
Q

Q−1∑
j=0

|j〉
∣∣xj mod N

〉
.

72 CHAPTER 4. QUANTUM COMPUTING

|φ2〉 thus contains the powers 13j mod 15, j = 0, 1, 2, . . . , or more specific, an
equally weighted superposition of states representing the values 1, 13, 4, 7, 1, 13, . . . ,
which obviously is a periodic sequence with period 4.

4) Measure the contents of the second register |φ2〉 and assume one obtains the result
b. This has the instant effect that |φ1〉 holds an equally weighted superposition of
only states representing j, such that b ≡ xj mod N.

Assume we measured the decimal value 1, then |φ1〉 = λ(|0〉+ |4〉+ |8〉+ |12〉+ . . .).

5) Applying the inverse of the QFT on the first register |φ1〉 produces peaks at integer
multiples of 1

r
— reciprocals of the unknown period r.

Application of the quantum gate (with ωQ a Q-th root of unity) thus yields:

|ψ4〉 =
1

Q

Q−1∑
j=0

Q−1∑
k=0

ωkjQ |k〉 |x
j mod N〉.

6) Steps 2) to 5) need to be iterated O(t) = O(logQ) times in order to produce, say
the following measurement output: (128, 64, 0, 192, 0, 128, 128, 64, 0, 192, 192, 64).
Non-zero values help to find out the period:

64

256
=

1

4
,
128

256
=

1

2
=

2

4
,
192

256
=

3

4
,

therefore the period of the sequence and thus the order of x ∈ Z∗N is r = 4 here.

In general the result y of the measurement of the first register in step 6) does not neces-
sarily yield such values, where the period can be directly obtained. Non-zero values are
only an approximation of multiples of the reciprocals of the period. In [42, Ch. 6.3.1] it
is elaborated in more detail that usually one needs the continued fraction expansion of
the number y/Q = [a0; a1, a2, . . .], in order to determine the period r. With this sequence
a0, a1, . . . one can define two recursions that help to approximate the fraction y/Q:

y/Q = [a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
.. .

,

hl = alhl−1 + hl−2, h−1 = 1, h−2 = 0,

kl = alkl−1 + kl−2, k−1 = 0, k−2 = 1.

The main idea is to compute the truncated continued fraction expansion of y/Q =
[a0; a1, . . . , al] = hl/kl until kl ≥ N for the first time. The denominator kl−1 of the
so-called convergents (hl/kl)l≥−2 is the sought-after period.
Just as a small example assume the value y = 66 would have been read in Step 6)
instead of (the more likely result of) 64. The truncated continued fraction expansion
[0, 1/3, 1/4, 8/31] stopped after the first denominator was larger than N = 15 and hence
yields the result r = 4.

4.4. QUANTUM COMPUTING MILESTONES 73

With the order at hand from the quantum part, we can finish off the example and continue
with the next (classical) steps of Algorithm 10 to factorize N = 15. Since r = 4 is even

and 13
4
2 6≡ −1 mod 15 we obtain p = gcd(132 − 1, 15) = 3 and q = 15

3
= 5.

We remark the probabilistic nature of Shor’s algorithm: If the random number x = 14
would have been chosen at random in the beginning, then we would have got the period
r = 2. Since (141 + 1) = 15 the algorithm would restart before the last step and thus skip
the obviously trivial factorization p = gcd(141 − 1, 15) = 1 and q = 15/1 = 15.
To sum the results up: If there was a quantum computer with a quantum register of size
logQ = 2 logN ∈ O(logN), where N2 ≤ Q ≤ 2N2, Shor’s algorithm can efficiently be
applied to factorize N and therefore break RSA in O((logN)3) quantum gate operations.
The terms sub-exponential as well as super-polynomial are used to describe the running
time of the best known classical algorithms to solve the factorization problem so far.
Shor’s idea leads to a polynomial time algorithm in n := logN , which is the appropriate
measure of the size of a number. The speedup thanks to Shor’s quantum algorithm over
the best known classical algorithm is:

O
(
e(C+o(1))n

1
3 (logn)

2
3

)
Shor−→ O(n3).

In 2012 the record for the largest number factored using Shor’s algorithm on a quantum
computer so far was 21 = 3 · 7 (see [23]).

The Discrete Logarithm Problem

Let g be a primitive element of (Z∗p, ·) and x ∈ Z∗p where p is a prime number. Again, the
discrete logarithm problem (DLP) is the task to compute r such that gr = x mod p.
To apply Shor’s idea to the DLP, it is sufficient to make small modifications. The sought-
after subgroup H ≤ G = (Z∗p, ·) × (Z∗p, ·) can be described as the kernel of the function
f(a, b) := gax−b mod p. f is a homomorphism of G onto (Z∗p, ·) whose kernel contains
multiples of the pair (r, 1). After obtaining the kernel of the map, we note that the element
(r, 1) yields a solution r to the DLP since

f(r, 1) = grx−1 ≡ 1 mod p⇔ gr ≡ x mod p.

We saw that the two important number theoretic problems widely used in cryptosystems
nowadays (namely in RSA and ElGamal) are broken by Shor’s algorithm running on a
quantum computer of proper size. Furthermore, the discrete logarithm problem on elliptic
curves (ECDLP) is affected by this algorithm. To illustrate the impressive impact there,
we remark that the best known classical attack against the DLP for elliptic curves gained
an exponential speedup, where N denotes the number of points on the curve:

O(
√
N) = O

(
e

logN
2

)
Shor−→ O((log N)3).

4.4 Quantum Computing Milestones

Wikipedia [41] provides an overview of important discoveries and achievements connected
to the quantum computer. We present a small collection of those “milestones” that are

74 CHAPTER 4. QUANTUM COMPUTING

of importance for this thesis. In this enumeration, NMR stands for the architecture of
quantum computers based on “nuclear magnetic resonance” effects. The model of NMR
quantum computers, where qubits are implemented as charged atomic particles trapped in
electromagnetic fields and manipulated with laser beams, were used in early experiments.
Unfortunately they do not seem to be a promising branch for future development, since
there are problems to scale them from small to large qubit systems — a requirement of
practical applications and one of DiVincenzo’s criteria (see Section 4.2).

1980 The idea of quantum computing was proposed by Manin.

1984 The BB84 protocol was proposed by Bennett and Brassard for the distribution of
cryptographic keys.

1993 Simon invented an oracle problem for which a quantum computer would be expo-
nentially faster than a conventional computer.

1994 Peter Shor discovers an important algorithm. [...] It solved both the factorization
problem and the discrete log problem. Its invention sparked a tremendous interest
in quantum computers.

1996 Lov Grover invented the quantum database search algorithm. [...] The algorithm
can be applied to a much wider variety of problems. Any problem that had to be
solved by random, brute-force search, could now have a quadratic speedup.

1998 First experimental demonstration of a quantum algorithm; a 2-qubit NMR quantum
computer was used to solve Deutsch’s problem.

1998 First execution of Grover’s algorithm (on an NMR computer).

2001 First execution of Shor’s algorithm; the number 15 was factored.

2005 The first quantum byte (qubyte, a collection of 8 entangled qubits) has been created.

2008 A qubit was stored for over 1 second in an atomic nucleus.

2011 Scientifically confirmed 14 qubit register.

2011 The company D-Wave claims to have the first commercially available quantum com-
puter called D-Wave One. They already claimed to have produced a 28-qubit quan-
tum computer in 2007 and a 128 qubit computer chip in 2008, though this claims
have yet to be verified by the scientific community.

2012 D-Wave claims to carry out quantum computations using 84 qubits.

2012 IBM announced that they are “on the cusp of building systems that will take com-
puting to a whole new level”.

2012 A two-qubit quantum computer that can easily be scaled up in size and functionality
at room temperature has been presented.

For the last two milestones see http://en.wikipedia.org/wiki/Quantum_computer.

http://en.wikipedia.org/wiki/Quantum_computer

4.5. POST QUANTUM CRYPTOGRAPHY 75

4.5 Post Quantum Cryptography

4.5.1 Impact of the Quantum Computer on Cryptosystems

We have seen that if a quantum computer of appropriate size would be available, some
currently used cryptosystems would be shaken. Some ciphers like the asymmetric cryp-
tosystems RSA, ElGamal would not be safe anymore, others like the symmetric AES are
vulnerable to a generic search attack, but they can be fixed by adapting the key length
to postpone the immediate threat. As will be discussed in Section 4.6 quantum mechan-
ics also provides some solutions for the dilemma it has brought to the cryptographic
community.

Nevertheless there are also classical cryptosystems that withstand the currently known
opportunities the quantum computer provides. In his apocalyptic introduction to post-
quantum cryptography Bernstein [10] asks “Is cryptography dead?” and thereafter pro-
vides four classes of public key cryptography systems that survive. Those cryptosystems
are hash-based, code-based, lattice-based and multivariate-quadratic-equations cryptosys-
tems.

There is no formal definition when a cryptographic system gets the attribute to be “post-
quantum” secure. Instead, to qualify as a post-quantum system, it needs to be broadly
believed to be classical secure as well as none of the currently known quantum algorithms
should be applicable. Those four classes seem to fulfill these criteria in the sense that they
have been heavily cryptanalyzed in the past and no way to break them with a quantum
computer has been discovered so far.

In this thesis we focused on the cryptosystems by McEliece (see 2.2.1) and Niederreiter
(see 2.2.2), both based on linear codes. In the following we discuss their biggest advantage.
The ideas that break the current state-of-the-art cryptosystems is due to two quantum
algorithms, namely Grover’s and Shor’s. They are not applicable with the same impact
on these code-based schemes as we address in Sections 4.5.2 and 4.5.3, therefore do not
face immediate threat by quantum computers, unless completely new ideas emerge.

However, since a quantum computer of appropriate size does not seem to be there soon,
also the ECRYPT2 report [27, 6.4] on the security of currently available ciphers states
that their recommendations “assume (large) quantum computers do not become a reality
in the near future”.

Anyhow, Bernstein [10] further gives three important reasons why the cryptographic com-
munity already investigate post-quantum cryptography to such an extend. He stresses that
it needs time to improve the efficiency, build confidence and improve the usability of post-
quantum cryptosystems. He also urges to be aware of the distinctions between quantum
and post-quantum cryptography and states “I see tremendous potential in post-quantum
cryptography and very little hope for quantum cryptography.”.

4.5.2 McEliece and Niederreiter PKS resist QFT

Dinh, Moore and Russell [11] used the quantum Fourier transform to mount “structural
attacks” against code-based cryptosystems, which means these attacks try to reveal en-
cryption details or even the secret key given the public key.

76 CHAPTER 4. QUANTUM COMPUTING

They showed that “the natural reduction of McEliece to a hidden sub-group problem
yields negligible information about the secret key, thus rule out the direct analogue of the
quantum attack that breaks, for example, RSA.”
This result is limited to the application of the quantum Fourier transform and does not
apply to other attacks — quantum or classical.
Since it seems most major speedups achieved by quantum computers are based on the
QFT or similar ideas, this remains a remarkable result.
The paper gives detailed criteria how to choose the code parameters as well as restrictions
for the matrices S and P in the McEliece cryptosystem (see Section 2.2.1), to be resistant
against quantum Fourier transform.
They conclude that classical Goppa codes basically remain a secure choices of “McEliece-
type cryptosystems against standard quantum Fourier sampling attacks”, since another
structural attack by Sidelnikov can only be mounted against a bigger class of codes as
discussed in Section 2.2.2.
More specific, the authors successfully test their criteria on the secure code parameters
(n = 1632, k = 1269, t = 34) we mentioned in Section 2.2.1, and claim they are secure
with respect to attacks based on the QFT.

4.5.3 Grover vs. McEliece

In the previous sections, we focused on structural attacks, however the best known attack
against the McEliece cryptosystem with the [n, k, d]−code C so far is based on a random
choice of k coordinates out of n and assuming they carry information. This means that
the error vector added in the encryption process (see Algorithm 5) does not affect these
k coordinates.
This idea leads to a technique called information-set decoding. In [4] Bernstein discusses
how and if Grover’s algorithm can speedup information-set decoding on a quantum com-
puter. The basic information-set decoding algorithm presented there views the generator
matrix G as a linear map from Fk2 → Fn2 and assumes a message x to be encrypted
with McEliece’s PKS. An information-set S of size k (dependent on a received message
y = x+ e) of the set {1, 2, . . . , n} is randomly chosen and the following two assumptions
are made about S:

1. The natural projection π : Fn2 → FS2 maps the error vector e (that was added to
obfuscate y) to 0 ∈ FS2 — every chosen coordinate is error-free.

2. The composition Fk2 → Fn2 → FS2 is an invertible (k × k) matrix.

Information-set decoding assumes the composition of message encryption and coordinate
retrieval is an invertible (k×k) matrix and tries to construct the error vector thus enabling
the computation of the message x = y− e. If one of these two assumptions is found to be
untrue — either the (k × k) matrix is not invertible or the computed error vector does
not have weight w(e) = t — this method fails. Thus the information-set S was obviously
not correct and another choice might be successful.
A closer analysis of the expected iterations before the first occurring of these events yields
a running time of O(c(1+o(1))n/ logn)) and is carried out in detail in the same paper.

4.6. QUANTUM CRYPTOGRAPHY 77

Bernstein then introduces quantum information-set decoding, an approach to use Grover’s
quantum algorithm for information-set decoding.
Hence he defines a function f that does the algorithmic steps presented above and returns
0 if the computation could be finished successfully. In this formulation he reduced decoding
to root finding of a function f ; find x, such that f(x) = 0. A task that Grover’s algorithm
can carry out on a quantum computer!
He argues that this method yields a quadratic speedup compared to the classical information-
set decoding algorithm with a complexity of O(c(1/2+o(1))n/ logn)). Then he points out some
enhancements and gives possible directions for further research.
The final conclusion of this paper is that quantum information-set decoding does not break
McEliece’s system or other code-based cryptosystems. Still, he recommends parameter
adjustments in the presence of a powerful quantum computer.
In Section 4.3.3 we pointed out the generic speedup Grover’s algorithm can achieve for any
NP problem reformulated as a search problem. A precautious user that made worst-case
assumption about the impact of Grover’s quadratic speedup against code-based cryp-
tosystems anyway, has of course already considered enlarging the key size to remain on
the same security level.

4.6 Quantum Cryptography

Quantum mechanical effects can evolve to form a threat for the security of some widespread
classical public key cryptosystems, on the other hand they also offer an entirely new form
of cryptography.
The theory of establishing secure communications based on quantum mechanics is sub-
summarized as quantum cryptography and the advantages and limitations will be briefly
addressed in the following to close the circle of topics dealt with in this thesis.

One-Time Pad and Provable Security

The discussion about provable security, we have started back in Section 2.1.1, now comes
to one interesting aspect — the one-time pad, OTP for short.
None of the cryptosystems we presented so far could mathematically be proven secure,
since they rely on assumptions. For example it is assumed that NP-complete problems
are indeed hard for computers to solve in the average case. Another assumption is that
nowadays best algorithms and the computational power currently available are not suffi-
cient to break these systems in practice. Although there are strong indications to believe
this, these assumptions are based on the current (scientific) knowledge and can eventually
change (see also [42, Ch. 13.11]).
Without going into detail we present the following interesting information theoretic facts.
In 1949 Shannon [34] defined the term “perfect secrecy”, where he also concludes that
to achieve perfect secrecy for a message M one has to use a key K of (at least) equal
length for the encryption process. Later he proved that the system known as one-time
pad (OTP), where each bit of the binary message M is XORed (bitwise addition mod 2)
with the truly random key bits of K, is perfectly secure in this information theoretic sense.

78 CHAPTER 4. QUANTUM COMPUTING

In practice there remain some serious issues that are a threat to this encryption system,
like the generation of random bits and a flawless implementation of the cryptosystem.
It is quite astonishing though that, if OTP is properly implemented and the key exchange
is done via quantum key distribution (QKD) — for example via the BB84 protocol pro-
posed by Bennett and Brassard, this system provides perfect secrecy. Since QKD does
not need a functional quantum computer but rather some already available technology
this seems promising. The BB84 protocol mentioned above produces a truly random cryp-
tographic key that can be used for an instance of OTP to provide perfect secrecy — in
the mathematically sense. A hybrid approach that is probably less secure, but does not
require key lengths comparable to plain text lengths, is to use the safely distributed key
material as input for, say, AES. The big advantage of this kind of key generation is that
security of QKD rests upon quantum physical laws.
As mentioned in Section 2.5, in the end it is — as so often in the physical world — a
trade-off between practicality and security to deploy cryptosystems. In [42, Ch. 13.9.2]
the author states that although quantum cryptography is “suited for securing informa-
tion that must be kept confidential indefinitely” it is “likely overkill for the majority of
messages, like email, whose value, even if intercepted, is transient”. Still quantum cryp-
tography, like OTP with QKD for example, is secure “regardless of the mathematical
sophistication, computational power, or algorithmic prowess of any eavesdropper” if care-
fully implemented.

Final Statement

To provide another reason, why a system that is perfectly secure in some sense may
not be used much in practice and why such a system will not make the whole crypto-
graphic research so far dispensable, we let Bruce Schneier (http://www.schneier.com/
crypto-gram-0210.html#7) have the last words in this thesis: “If you think you know
how to do key management, but you don’t have much confidence in your ability to design
good ciphers, a one-time pad might make sense. We’re in precisely the opposite situation,
however: we have a hard time getting the key management right, [...] but we’re pretty
confident in our ability to build reasonably strong algorithms. It’s just not the weak point
in our systems.”.

http://www.schneier.com/crypto-gram-0210.html#7
http://www.schneier.com/crypto-gram-0210.html#7

List of Tables

2.1 Minimum symmetric key size in bits for various attackers 45
2.2 Security levels and symmetric key size equivalent 45
2.3 Security levels and key size equivalent of common PKS 46
2.4 Security levels and according parameters of the McEliece PKS 47
2.5 Parameters of the McEliece PKS with limited key size 47

4.1 Assumptions about the properties of bits that are no longer true for qubits. 61

79

List of Algorithms

1 The decoding process of binary Goppa codes 24

2 Maximum Likelihood Decoding (MLD) . 29
3 Maximum Likelihood Decoding with Preprocessing (MLDP) 30
4 McEliece key generation . 34
5 McEliece encryption . 34
6 McEliece decryption . 34
7 Signature generation . 42
8 Signature verification . 43

9 Grover’s algorithm . 69
10 Classical part of Shor’s algorithm . 71

80

Bibliography

[1] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and Weaknesses of Quantum Computing. SIAM J. Comput., 26(5):1510–1523, 1997.
http://dx.doi.org/10.1137/S0097539796300933, website accessed 2013-03-14.

[2] E. R. Berlekamp. Goppa Codes. IEEE Transactions on Information Theory, pages
19:590–592, 1973.

[3] E. R. Berlekamp, R. J. McEliece, and Tilborg van H. C. A. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory,
24, 1978.

[4] Daniel J. Bernstein. Grover vs. McEliece. In Proceedings of the Third in-
ternational conference on Post-Quantum Cryptography, PQCrypto’10, pages 73–
80, Berlin, Heidelberg, 2010. Springer-Verlag. http://dx.doi.org/10.1007/

978-3-642-12929-2_6, website accessed 2013-03-14.

[5] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending the
McEliece cryptosystem. Cryptology ePrint Archive, Report 2008/318, 2008. http:

//eprint.iacr.org/, website accessed 2012-12-21.

[6] Thomas A. Berson. Failure of the McEliece public-key cryptosystem under message-
resend and related-message attack. In Advances in Cryptology - CRYPTO ’97, volume
1294 of Lecture Notes in Computer Science, pages 213–220. Springer Berlin Heidel-
berg, 1997. http://dx.doi.org/10.1007/BFb0052237, website accessed 2012-12-21.

[7] Bhaskar Biswas. Implementational aspects of code-based cryptography, 2010.

[8] Jehoshua Bruck and Moni Naor. The hardness of decoding linear codes with prepro-
cessing. IEEE Transactions on Information Theory, 36:381–385, 1990.

[9] R. Overbeck D. Engelbert and A. Schmidt. A Summary of McEliece-Type Cryp-
tosystems and their Security. Cryptology ePrint Archive, Report 2006/162, 2006.
http://eprint.iacr.org/2006/162.ps, website accessed 2013-03-14.

81

http://dx.doi.org/10.1137/S0097539796300933
http://dx.doi.org/10.1007/978-3-642-12929-2_6
http://dx.doi.org/10.1007/978-3-642-12929-2_6
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0052237
http://eprint.iacr.org/2006/162.ps

82 LIST OF ALGORITHMS

[10] Erik Dahmen Daniel J. Bernstein, Johannes Buchmann, editor. Post-Quantum Cryp-
tography. Springer, 2009. http://pqcrypto.org/, website accessed 2013-03-14.

[11] Hang Dinh, Cristopher Moore, and Alexander Russell. McEliece and Niederreiter
cryptosystems that resist quantum fourier sampling attacks. In Proceedings of the
31st annual conference on Advances in cryptology, CRYPTO’11, pages 761–779,
Berlin, Heidelberg, 2011. Springer-Verlag. http://dl.acm.org/citation.cfm?id=

2033036.2033093, website accessed 2013-03-14.

[12] David P. Divincenzo. The physical implementation of quantum computation.
Fortschr. Phys, 48, 2000.

[13] Gerhard Dorfer. Lecture notes on error correcting codes. http://dmg.tuwien.ac.

at/dorfer/codes/index.html, website accessed 2012-12-21.

[14] Nobel Committee for Physics. Particle control in a quantum world. http://kva.se/
Documents/Priser/Nobel/2012/fysik/pop_fy_en_12.pdf, website accessed 2013-
03-14.

[15] Damien Giry. BlueKrypt — Cryptographic Key Length Recommendation, 2012.
http://www.keylength.com, website accessed 2012-12-21.

[16] Tom Høholdt and Ruud Pellikaan. On the decoding of algebraic-geometric codes.
IEEE Trans. Inform. Theory, 41:1589–1614, 1995.

[17] Heeralal Janwa and Oscar Moreno. McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes. Des. Codes Cryptography, 8(3):293–307, 1996. http:

//dx.doi.org/10.1023/A:1027351723034.

[18] Kazukuni Kobara and Hideki Imai. Semantically Secure McEliece Public-Key Cryp-
tosystems - Conversions for McEliece PKC. Springer Verlag, 2001.

[19] Neal Koblitz and Alfred J. Menezes. Another Look at “Provable Security”. Technical
report, 2004.

[20] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications.
Cambridge University Press, 1994.

[21] S. Loth, S. Baumann, C.P. Lutz, D.M. Eigler, and A.J. Heinrich. Bistability in
atomic-scale antiferromagnets. Science, 335(6065):196–9, 2012. http://dx.doi.

org/10.1126/science.1214131, website accessed 2013-03-14.

[22] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes.
North-Holland mathematical library. North-Holland Pub. Co., 1978. http://books.
google.at/books?id=LuomAQAAIAAJ, website accessed 2012-12-21.

[23] Enrique Mart́ın-López, Anthony Laing, Thomas Lawson, Roberto Alvarez, Xiao-Qi
Zhou, and Jeremy L. O’Brien. Experimental realization of Shor’s quantum factoring
algorithm using qubit recycling. Nature Photonics, 6(11):773–776, 2012. http://

dx.doi.org/10.1038/nphoton.2012.259, website accessed 2013-03-14.

http://pqcrypto.org/
http://dl.acm.org/citation.cfm?id=2033036.2033093
http://dl.acm.org/citation.cfm?id=2033036.2033093
http://dmg.tuwien.ac.at/dorfer/codes/index.html
http://dmg.tuwien.ac.at/dorfer/codes/index.html
http://kva.se/Documents/Priser/Nobel/2012/fysik/pop_fy_en_12.pdf
http://kva.se/Documents/Priser/Nobel/2012/fysik/pop_fy_en_12.pdf
http://www.keylength.com
http://dx.doi.org/10.1023/A:1027351723034
http://dx.doi.org/10.1023/A:1027351723034
http://dx.doi.org/10.1126/science.1214131
http://dx.doi.org/10.1126/science.1214131
http://books.google.at/books?id=LuomAQAAIAAJ
http://books.google.at/books?id=LuomAQAAIAAJ
http://dx.doi.org/10.1038/nphoton.2012.259
http://dx.doi.org/10.1038/nphoton.2012.259

LIST OF ALGORITHMS 83

[24] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory.
DSN Progress Report 42-44: 114, 1978. http://ipnpr.jpl.nasa.gov/progress_

report2/42-44/44N.PDF, website accessed 2012-12-21.

[25] Harald Niederreiter and Chaoping Xing. Algebraic Geometry in Coding Theory and
Cryptography. Princeton University Press, Princeton, NJ, USA, 2009.

[26] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, 2010. http://books.

google.de/books?id=-s4DEy7o-a0C, website accessed 2013-03-14.

[27] European Network of Excellence in Cryptology II. ECRYPT II Yearly Report on Al-
gorithms and Key Lengths, 2012. http://www.ecrypt.eu.org/documents/D.SPA.

20.pdf, website accessed 2012-12-21.

[28] Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum Cryptog-
raphy, chapter 4, pages 95–145. Springer Berlin Heidelberg, 2009. http://dx.doi.

org/10.1007/978-3-540-88702-7_4, website accessed 2013-03-14.

[29] Rafael Misoczki Paulo S. L. M. Barreto, Richard Lindner. Decoding square-free
Goppa codes over Fp. CoRR, abs/1103.3296, 2011. http://arxiv.org/abs/1103.

3296, website accessed 2013-05-01.

[30] X.-W. Wu R. Pellikaan and S. Bulygin. Error-correcting codes and cryptol-
ogy. http://www.win.tue.nl/~ruudp/courses/2WC11/2WC11-book.pdf, website
accessed 2013-02-28; Book in preparation to be published, preliminary version (23
January 2012).

[31] Eleanor Rieffel and Wolfgang Polak. An introduction to quantum computing for
non-physicists. ACM Comput. Surv., 32(3):300–335, 2000. http://doi.acm.org/

10.1145/367701.367709, website accessed 2013-03-14.

[32] Thomas Risse. How SAGE helps to implement Goppa Codes and McEliece
PKCSs, 2012. http://www.weblearn.hs-bremen.de/risse/papers/UbiCC11/

SAGE_Goppa_McEliece.pdf, website accessed 2013-03-14.

[33] Dorit Ron and Adi Shamir. Quantitative Analysis of the Full Bitcoin Transaction
Graph. Cryptology ePrint Archive, Report 2012/584, 2012. http://eprint.iacr.

org/2012/584, website accessed 2013-03-14.

[34] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28, 1949.

[35] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput., 26(5):1484–1509, October
1997. http://dx.doi.org/10.1137/S0097539795293172, website accessed 2013-03-
14.

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://books.google.de/books?id=-s4DEy7o-a0C
http://books.google.de/books?id=-s4DEy7o-a0C
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://dx.doi.org/10.1007/978-3-540-88702-7_4
http://dx.doi.org/10.1007/978-3-540-88702-7_4
http://arxiv.org/abs/1103.3296
http://arxiv.org/abs/1103.3296
http://www.win.tue.nl/~ruudp/courses/2WC11/2WC11-book.pdf
http://doi.acm.org/10.1145/367701.367709
http://doi.acm.org/10.1145/367701.367709
http://www.weblearn.hs-bremen.de/risse/papers/UbiCC11/SAGE_Goppa_McEliece.pdf
http://www.weblearn.hs-bremen.de/risse/papers/UbiCC11/SAGE_Goppa_McEliece.pdf
http://eprint.iacr.org/2012/584
http://eprint.iacr.org/2012/584
http://dx.doi.org/10.1137/S0097539795293172

84 LIST OF ALGORITHMS

[36] V. M. Sidelnikov and S. O. Shestakov. On insecurity of cryptosystems based on
generalized Reed-Solomon codes. Discrete Mathematics and Applications, 2:439–444,
1992.

[37] Christian Wieschebrink and Godesberger Allee. Cryptanalysis of the Niederreiter
Public Key Scheme Based on GRS Subcodes. 2010.

[38] Wikipedia. Computational hardness assumption, 2012. http://en.wikipedia.org/
wiki/Computational_hardness_assumption, website accessed 2012-12-21.

[39] Wikipedia. Deutsch-Jozsa-Algorithmus, 2013. http://de.wikipedia.org/wiki/

Deutsch-Jozsa-Algorithmus#Der_Quantenalgorithmus, website accessed 2013-
03-14.

[40] Wikipedia. Theoretical implications of one-way functions, 2013. http:

//en.wikipedia.org/wiki/One-way_function#Theoretical_implications_

of_one-way_functions, website accessed 2013-03-14.

[41] Wikipedia. Timeline Of Quantum Computing, 2013. http://en.wikipedia.org/

wiki/Timeline_of_quantum_computing, website accessed 2013-03-14.

[42] Colin P. Williams. Explorations in Quantum Computing. Springer, 2nd edition, 2011.

[43] T. Ylonen. The Secure Shell (SSH) Authentication Protocol, 2006. http://tools.

ietf.org/html/rfc4252#section-7, website accessed 2012-12-21.

http://en.wikipedia.org/wiki/Computational_hardness_assumption
http://en.wikipedia.org/wiki/Computational_hardness_assumption
http://de.wikipedia.org/wiki/Deutsch-Jozsa-Algorithmus#Der_Quantenalgorithmus
http://de.wikipedia.org/wiki/Deutsch-Jozsa-Algorithmus#Der_Quantenalgorithmus
http://en.wikipedia.org/wiki/One-way_function#Theoretical_implications_of_one-way_functions
http://en.wikipedia.org/wiki/One-way_function#Theoretical_implications_of_one-way_functions
http://en.wikipedia.org/wiki/One-way_function#Theoretical_implications_of_one-way_functions
http://en.wikipedia.org/wiki/Timeline_of_quantum_computing
http://en.wikipedia.org/wiki/Timeline_of_quantum_computing
http://tools.ietf.org/html/rfc4252#section-7
http://tools.ietf.org/html/rfc4252#section-7

	Linear Codes
	Definitions
	General Decoding Schemes
	Important Classes of Codes
	Cyclic Codes
	RS Codes
	BCH Codes
	GRS Codes
	Alternant Codes

	Goppa Codes
	Classical Goppa Codes
	Decoding Algorithms

	Cryptography
	Complexity Theory
	Suitable Problems and Algorithms

	Public Key Cryptography
	The McEliece PKS
	The Niederreiter PKS
	Equivalency of McEliece and Niederreiter Cryptosystem

	Signatures
	Authentication
	Security Considerations
	Symmetric Schemes
	Asymmetric Schemes
	McEliece and Niederreiter PKS

	Applications

	Example of PKS based on Goppa Codes using Sage
	McEliece PKS
	Niederreiter PKS

	Quantum Computing
	Quantum Bit
	Quantum Computer
	Quantum Algorithms
	Algorithm of Deutsch-Jozsa
	Quantum Fourier Transform
	Grover's Algorithm
	Shor's Algorithm

	Quantum Computing Milestones
	Post Quantum Cryptography
	Impact of the Quantum Computer on Cryptosystems
	McEliece and Niederreiter PKS resist QFT
	Grover vs. McEliece

	Quantum Cryptography

